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Nolinear ex

@ Nolinear expectation theory



Nolinear expectation theory

Background

e Kolmogorov’s foundation of probability theory: (2, F, P)
o Wiener probability space: 2 = C'([0,00)),F = B(Q)
e Brownian motion: By(w) = wy,t > 0.

o Knight (1921): Knightian uncertainty
@ Choquet (1953): Choquet expectation, Capacity theory
@ Peng (1997): g-expectation, conditional g-expectation
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Nolinear expectation theory

Background

Kolmogorov’s foundation of probability theory: (2, F, P)
o Wiener probability space: 2 = C'([0,00)),F = B(Q)
e Brownian motion: By(w) = wy,t > 0.

Knight (1921): Knightian uncertainty

Choquet (1953): Choquet expectation, Capacity theory

Peng (1997): g-expectation, conditional g-expectation

Peng (2004): Nonlinear (sublinear) expectation theory (2, H,E)
o E[X]=suppep Ep[X]=suppep [ XdP
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Nolinear expectation theory

o Example: Nonlinear g-expectation
e Consider BSDE on (2, L%(}‘T))

~dYf = g(Z)dt - Z5dW,, Y5 =€ e L3 (Fr)
The g-expectation and g-conditional expectation:
[ﬂft] t? (fT)HL (.7:;5) 0<t<T.

E9[€] = EI[€]Fo] = Y.
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Nolinear expectation theory

Nonlinear expectation space (2, H, E)

e ()isa given set
@ 7 is a linear space of real-valued functions on €2 such that
X1, X, € H, then p(X1,+,X,,) e H == foreach ¢ € Op;,(R™)".

@ H is considered as the space of random variables.

'CLip(R™) denotes the set of all Lipschitz functions on R™
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Nolinear expectation theory

Nonlinear expectation space

A nonlinear expectation is a functional E:H->R satisfying the following
properties: for each X,Y € H,

(i) Monotonicity: X > Y implies E[X] > E[Y];
(ii) Constant preserving: E[c] = ¢ for ¢ € R;
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Nolinear expectation theory

Nonlinear expectation space

A nonlinear expectation is a functional E:H->R satisfying the following
properties: for each X,Y € H,

(i) Monotonicity: X > Y implies E[X] > E[Y];
(ii) Constant preserving: E[c] = ¢ for ¢ € R;

A sublinear expectation: (i) + (i) +
(iii) Sub-additivity: E[X + Y] <E[X]+E[Y];
(iv) Positive homogeneity: E[A\X] = AE[X] for A > 0.

The triple (€2, H, IFE) is called a nonlinear (sublinear) expectation space.




Nolinear expectation theory

Nonlinear expectation space

A nonlinear expectation is a functional E:H->R satisfying the following
properties: for each X,Y € H,

(i) Monotonicity: X > Y implies E[X] > E[Y];
(ii) Constant preserving: E[c] = ¢ for ¢ € R;

A sublinear expectation: (i) + (i) +
(iii) Sub-additivity: E[X + Y] <E[X]+E[Y];
(iv) Positive homogeneity: E[A\X] = AE[X] for A > 0.

The triple (€2, H, IFE) is called a nonlinear (sublinear) expectation space.

e If the inequality in (7i7) becomes equality, I reduces to a linear
expectation and (2, H,E) reduces to a linear expectation space.



Nolinear expectation theory

Robust representation theorem

(v) Regularity: If {X;}°, c H satisfies that X;(w) | 0 as i > oo, for each
w € ), then
lim B[ X;] = 0.

7—>00

Let & be a sublinear expectation on (), H) satisfying the regularity
condition. Then there exists a weakly compact set ‘P of probability measures

on (,0(H)), such that

A

E[¢] = sup Ep[&], foreach § € H.
PeP

‘P is called a set that represents E.
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Nolinear expectation theory

Robust representation theorem

(v) Regularity: If {X;}°, c H satisfies that X;(w) | 0 as i > oo, for each
w € ), then
lim B[ X;] = 0.

7—>00

Let & be a sublinear expectation on (), H) satisfying the regularity
condition. Then there exists a weakly compact set ‘P of probability measures

on (,0(H)), such that

A

E[¢] = sup Ep[&], foreach § € H.
PeP

‘P is called a set that represents E.

o Capacity:
c(A) =sup P(A), AeB(Q).
PeP
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Nolinear expectation theory

Distribution

Let (Q,H, IE) be a nonlinear (resp. sublinear) expectation space. For each
d-dimensional random vector X € H?, define Fy : C Lip(Rd) - R by

Fx[¢]:=E[p(X)], Vo€ Crip(R). (1.1)

Fy is called the distribution of X. (R%, Cp;,(R?),Fy) forms a sublinear
expectation space.
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Nolinear expectation theory

Distribution

Let (Q,H, IE) be a nonlinear (resp. sublinear) expectation space. For each
d-dimensional random vector X € H?, define Fy : C Lip(Rd) - R by

Fx[¢]:=E[p(X)], Vo€ Crip(R). (1.1)

Fy is called the distribution of X. (R%, Cp;,(R?),Fy) forms a sublinear
expectation space.

Definition 3

Two d-dimensional random vectors on sublinear expectation spaces
(21, H1,Eq) and (Qs9, Ha, Es), respectively, are called identically

distributed, denoted by X d X9, ifFx, =Fx,, ie.,

E1[p(X1)] = Ea[p(X2)], Yo € CLip(RY). (1.2)




Nolinear expectation theory

Independence

Definition 4

A d-dimensional random vector Y is said to be independent from an

n-dimensional random vector X, denoted by Y 1L X, if for each test function
¢ € Crip(R™9),

E[¢(X,Y)] =E[E[¢(2,Y)]a-x]- (1.3)

o “Y Il X7+ “X I Y” (See Peng (2010), Hu & Li (2014))
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Nolinear expectation theory

Independence

Definition 4

A d-dimensional random vector Y is said to be independent from an

n-dimensional random vector X, denoted by Y 1L X, if for each test function
¢ € Crip(R™9),

E[¢(X,Y)] =E[E[¢(2,Y)]a-x]- (1.3)

o “Y I X"# “X 1Y (SeePeng (2010), Hu & Li (2014))
e Let X and X be two d-dimensional random vectors on (€2, 7, E). X is
called an independent copy of X if X % X and X 1 X.
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Nolinear expectation theory

(G-normal distribution

A d-dimensional random vector X on (€2, 7, E) is called G-normally
distributed if

aX+bX'g\/a2+b2X, for a,b > 0,

where X is an independent copy of X.
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Nolinear expectation theory

(G-normal distribution

A d-dimensional random vector X on (€2, 7, E) is called G-normally
distributed if

aX+bX'g\/a2+b2X, for a,b > 0,

where X is an independent copy of X.

o E[X]=E[-X]=0.
@ Ford=1, X ~N(0,[c?,5%]), where ¢? := —-E[-X?], 5% := E[X?].

1. 1 1
Gx(a):= §E[aX2] = 552a+ - §g2a7, Va e R.

o G x is called the generating function of X.
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Nolinear expectation theory

Relation to the GG-heat equation

Let GG be the generating function of the G-normally distributed random
variable X. For each ¢ € Cr;,(R?), define

u(t,z) = E[p(z +VtX)], (t,z) € [0,00) x R%. (1.4)

Proposition 6

u is the unique viscosity solution of the G-heat equation

Ay — G(D2u) = 0, =g = (). (1.5)
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Nolinear expectation theory

Generating function

For a d-dimensional G-normally distributed random vector X, the generating
function G = Gx : S(d) ~ R is defined by

Gx(Q) = E[(QX,X)], QeS(d).

N | —

where S(d) denotes the collection of all d x d symmetric matrices.

@ (i is a sublinear and continuous function monotone in @ € S(d).

@ There exists a bounded and closed set T c S(d) such that

c(Q) - %su}r)tr[VQ], Q e S(d).

@ A d-dimensional G-normally distributed random vector is denoted by
X ~N(0,7).
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Nolinear expectation theory

Generating function

Proposition 7

Let & be a d-dimensional G-normally distributed random vector characterized
by its generating function

Ge(@) = SEIQE. 6], QS(d)

Then, for any matrix K € R™%, K¢ is also an m-dimensional G-normally
distributed random vector. Its corresponding generating function is

1

Gre(@) = SEUKTQKE )], Q<S(m).
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Nolinear expectation theory

(G-Brownian motion

Definition 8

A d-dimensional process (By) >0 With By € H? for each t > 0 is called a
G-Brownian motion if the following properties are satisfied:

(1) Bo=0;

(2) Foreacht,s >0, Byys— By ~N(0,8T);

(3) Foreacht,s >0, Byys— By Il (Byy,

..., By,), for each n € N and
0<t; <-- <ty <8
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Nolinear expectation theory

(G-Brownian motion

Definition 8

A d-dimensional process (By) >0 With By € H? for each t > 0 is called a
G-Brownian motion if the following properties are satisfied:

(1) Bo=0;

(2) Foreacht,s >0, Byys— By ~N(0,8T);

(3) Foreacht,s >0, Byys— By Il (Byy,

..., By,), for each n € N and
0<t; <-- <ty <8

e (By,,...,B,) is not G-normally distributed.

@ (G-Brownian motion is not a G-Gaussian process.
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G-Gaussian random field and spatial G-white noise

© G-Gaussian random field and spatial G-white noise
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G ian random field and sp -white noise

(G-Gaussian random field

Let I' be a parameter set. Denote the family of all sets of finite indices by

Jr = {1: (717"'7771) D Vnel, Y15 Un € T, Yi g for i]}

Definition 9

A d-dimensional random field on (2, %, ) is a family of random variables
W = (W,)er such that W, € H¢ for each v € T.
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G-Gaussian random field and spatial G-white noise

(G-Gaussian random field

Let I' be a parameter set. Denote the family of all sets of finite indices by
jl“ = {1: (717"'77”) : Vne Na Y1, Un € F? Yi # Y for ¢ i]}

Definition 9

A d-dimensional random field on (2, %, ) is a family of random variables
W = (W,)er such that W, € H¢ for each v € T.

| A\

Definition 10

A d-dimensional random field (W )er on (2, H, [) is called a G-Gaussian
random field if for each v = (y1,+,,) € Jr, the (d x n)-dimensional
random vector W, = (W, ,---, W, ) is G-normally distributed.

A

@ (G-Brownian motion # (G-Gaussian random field
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G-Gaussian random field and spatial G-white noise

For each y = (71, ;) € Jr, we define

1

Gw, (Q) = ZE[(QW>, W3)], QeS(n xd),

Then (G, ) ez constitutes a family of monotone sublinear and continuous
functions satisfying the properties of consistency:

(1) Compatibility: For any (v1,**,Yn,Yn+1) € Jr and @ € S(n x d),
GW’Y1 7"'7W“/n7WWn+1 (Q) = GW’yl s s Wy, (Q)7 (21)

whereQ:( %2 8 )eS((n+1)><d);

(2) Symmetry: For any permutation 7 of {1,---,n} and Q € S(n x d),
GW,._ 1y Wiy (@) = Gy, (17H(Q)), (22)
where the mapping 77! : S(n x d) = S(n x d) is defined by

(71'71(@))2.]. = (qﬂ_1(i)7r_1(j)), ’i,j = 1,---,71 x d.
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G-Gaussian random field and spatial G-white noise

Existence of (G-Gaussian random fields

Theorem 11

Let (G)yegp be a family of monotonic and sublinear functions satisfying the
compatibility condition (2.1) and symmetry condition (2.2). Then there exists
a d-dimensional G-Gaussian random field (W) er on a sublinear
expectation space (Q, H, ) such that for eachy = (71,7 ) € Jr,

W, = (W, W,,) is G-normally distributed and

1

G, (Q) = SEI(QW, W3)] = G4(Q), forany Q e S(n xd).
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G-Gaussian random field and spatial G-white noise

Existence of (G-Gaussian random fields

Theorem 12

If there exists another Gaussian random field (W )'yel“’ with the same index
set I, defined on a sublinear expectation space (Q, H,E) such that for each

v=(,"m) € In W7 is G-normally distributed with the same generating
function, namely,

%E[(Q _1 _1>] W(Q) for any Q € S(n x d).

Then we have W d w.
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G-Gaussian random field and spatial G-white noise

Existence of (G-Gaussian random fields

Theorem 12

If there exists another Gaussian random field (W., )wel“’ with the same index
set I, defined on a sublinear expectation space (Q, H,E) such that for each

v=(,"m) € In W, is G-normally distributed with the same generating
function, namely,

%EHQ_X _1)] G1(Q) forany Q € S(n x d).

Then we have W d w.

IfI' =R*, W = (W) er becomes a G-Gaussian process which has been
studied in Peng (2011).
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G-Gaussian random field and spatial G-white noise

Spatial G-white noise

Let T = By(R?) = {A e B(R?), A4 < 00}, where )4 denotes the Lebesgue
measure of A € B(R?).

Definition 13

Let (Q,H, I@J) be a sublinear expectation space. A 1-dimensional G-Gaussian
random field W = (W 4) scr is called a 1-dimensional G-white noise if

(1) Forall A e T, B[W2] = 3%Aa, -E[-W%] = 0?4
(2) Foreach A1,As €T’, A1 n Ay = &, we have

E[Wa,W4,]=E[-W4, Wa,]=0, (2.3)
IAE[(V\V.AlUAQ - WA1 - WA2)2] =0, 2.4)

where 0 < 0% < @ are any given numbers.
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e ian random field and spatial G-white noise

Existence of (G-white noise

Set
G(a) = —(02a ~o%a7), aeR. (2.5)

For each y = (A, -+, Ap), Aj el = Bo(R?), define a sublinear and monotone
function G4 (-) : S(n) ~ R as follows:

i,j=1

GAUwaQ):(;(EDQUA&m%):Q:(%ﬁZFlegow- (2.6)

® (G )yegy satisfies the compatibility condition (2.1) and symmetry
condition (2.2).
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G-Gaussian random field and spatial G-white noise

Existence of (G-white noise

Theorem 14

For each given numbers 0 < 02 < G2, let the family of generating functions
(G+)~eqy be defined as in (2.6). Then there exists a 1-dimensional spatial

G-white noise (W) ~er on a sublinear expectation space (2,1, &) such that,
for each y = (A1, An) € I, Q = (gij)7j=1 € S(n),

G, (Q) = SE[(QW,, W] = G( Y. gisdana;)-

1,5=1

N | —

@ Denote by LZ(W) the completion of # under the Banach norm

|- {2 = (E[|-|*])/2. Then (2, 1.% (W), E) forms a complete sublinear
expectation space.
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G-Gaussian random field and spatial G-white noise

Invariance under rotation and translation

Proposition 15

For each p e R? and O € Q(d) := {0 e R4 : OT = 071}, we set

Tp0(A) = {Oz +p:x e A}, for A€ By(R?).
Then, for each Ay, -+, A, € Bo(R?), we have

d
(Way, s Wa,) = (Wr, 5a)s W, 5(a,))-

Namely, the finite-dimensional distributions of W are invariant under
rotations and translations.




e ian random field and spatial G-white noise

Stochastic calculus w.r.t. G-white noise

For any simple function
mn
f(ﬂf) = Za’ilAi(x)v Vn e N)a17"'7an € ]RaAlv 7An € ]-_‘7
i=1

define the stochastic integral w.r.t. the spatial G-white noise as follows:

fRdf(x)W(dx): a; fRd lAi(a:)W(d@:g;aiWAi.

n
i=1

Denote L*(R?) = {f : | f72 = [pa |f (2)]Pdz < c0.}
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G-Gaussian random field and spatial G-white noise

Stochastic calculus w.r.t. G-white noise

If f : RY - R is a simple function, then

5 U fR F(x)W(dx)

2
]sﬁzllf\iz-

@ The stochastic integral can be continuously extended to the whole
domain of L?(R?).

{fga f(2)W(dz) : f € L*(RY)} is a G-Gaussian random field.
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G-Gaussian random field and spatial G-white noise

Example 18

Let {W4, A € By(R)} be a 1-dimensional G-white noise. Define
B; = W([0,t]), t € Ry, then

E[B:Bs] = 7°A\[0.4]n[0.5] = T (5 A E).

Unlike the classical case, B, is no longer a G-Brownian motion, although
B, ¢ N({0} x [o%t,5%t]) for each > 0.
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Space-time G-white noise

© Space-time G-white noise
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Space-time G-white noise

Space-time GG-white noise

SetT'={[s,t) x A:0<s<t<oo, AeBy(R?)}.

Definition 19

A random field {W ([s,t) x A)}([s,4)xa)er ON (Q,H,E) is called a 1-dimensional
space-time G-white noise if it satisfies the following conditions:

(i) For each fixed [s,1), {W([s,t) x A)} 4cB,(ra) is a 1-dimensional spatial
G-white noise that has the same family of finite-dimensional distributions as

(Vt = sWa) gy (reys

(ii) Forany r < s<t, AeBy(R?),

W([r,s) x A) + W([s,t) x A) = W([r,t) x A);
(iii) Foranyt; <s<tand 4; € By(R?),i=1,--,n,

W([Sat) 2 A) I (W([Sl,tl) 23 Al)v'”)w([snatn) R An))7

where (W) aci, (re) is @ 1-dimensional spatial G-white noise.




Space-time G-white noise

It is important to mention that {W ([s,t) x A),0< s <t < 00, A € By(R?)} is
no longer a G-Gaussian random field.
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Sp: e G-white noise

Existence of (G-white noise

Set

Q={we (R : w([r,t) x A) = w([r,s) x A) +w([s,t) x A),
Vr<s<t, AeBy(RY},

and for each w € 2, define the canonical process (W) er by
W ([s,t) x A)(w) =w([s,t) x A), VO< s <t < oo, AeBy(R?).
Set Fr = o{W([s,t) x A),0<s<t<T,AeBy(R}, F= V Fr,and
T>0
Lip(Fr) ={e(W([s1,t1) x A1), -, W([Sn,tn) x Ay)),VneN, s;<t; <T,
2‘:1’...777/7 A17-’AnEBO(Rd),WECsz(Rn)}g

Ly(F) = U Ly(F).
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Space-time G-white noise

For X € L;,(F) with the form

X = @(W([O,tl) X Al),---,W([O,tl) X Am),--',W([tn_l,tn) X Al),"',
W([tn-1,tn) x Am)),

where 0 < t1 <+ <t, < oo, {A1,, An} C BO(Rd) are mutually disjoint, and
¢ € CLip(R™™). Define

B[X] = E[p(VEED, o VEE™ ey Vi~ Tt €D ooy Vi — Tt 8)],

where {&1,+,6,}, &5 = (5]('1)7.“75](@)), 1<j<n,arei. i. d. G-normally

distributed random vectors on a sublinear expectation space (Q, H, fE)
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Space-time G-white noise

The conditional expectation of X under F, t; <t < t;,1, is defined by

E[X|F] =E[e(W([0,t1) x A1), W([0,£1) x An), -,
W([tn-1,tn) x A1), W([tn-1,t0) x Ap))|Ft]
= p(W([0,1) x A1), -+, W([0,t1) x Ay, -+,
W ([tj-1,t5) x A1), W([tj-1,15) x Am)),

where

1/1(17]_1, 7=T]m) = ]E[(P(xllf"ul'jma \ tj+1 ](}_)17 s\ j+1 —t; €j+1 )
oV = 1€ V= 11 60)].

@ The canonical process (W )~er is a space-time white noise on
(2, Lip(F), E, (E[|F:])s0)-

o For each p > 1, denote by L,(W(q 17) (resp., Ly,(W)) the completion
of Ly (Fr) (resp., Lip(F)) under the form || X ||, := (E[|XP]) /7.



Space-time G-white noise

Proposition 20
Forany XY € L,(W), n € LZ.(W[o ), we have
(i) B[X |F] 2 E[Y | Ft] for X > Y.

(i) E[n|F] =

(iii) ]E[X+Y|]-"t] <R[X|F]+E[Y|F].

(iv) E[nX |F] = " E[X |F] + " E[-X | F] if n is bounded.
(v) E[E[X |ft]| 5] = B[X|Fins] for s > 0.
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Space-time G-white noise

Stochastic integral w.r.t. space-time (G-white noise

o Let M?>°([0,7T] x R?%) be the collection of simple random fields with the

form:
n-1m

f(s,miw) = >0 > Xij(w)la, (@)1, 1. (5), (3.1

i=0 j=1
where X;; € LL(W(g;,1),i=0,n—=1,5=1,~m,

0=tg < <t,=T,and {4;}7 c Bo(R?) is a mutually disjoint
sequence.

@ Bochner’s integral of f:

T n-1m
fRd A f(s,x)dsdx = Z ZXij(tiJrl —ti)Aa;- 3.2)

i=0 j=1
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Space-time G-white noise

Stochastic integral w.r.t. space-time (G-white noise

The stochastic integral w.r.t. the space-time G-white noise W can be defined
as follows:
T n-1 m
fo [Rd F(s,0)W(ds,dz) = 3 3 Xy W([titin) x A7), (3.3)

i=0 j=1

o MZ%([0,T] x R?) » LE(W(o77)
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Space-time G-white noise

Stochastic integral w.r.t. space-time (G-white noise

The stochastic integral w.r.t. the space-time (G-white noise W can be defined
as follows:
T n-1m
fo /Rdf(s,:c)W(ds,dx) =3 S X W([titi) < 4;). (3.3)

i=0 j=1

o MZ%([0,T] x R?) » LE(W(o77)

For any simple random field f e M*°([0,T] x R%),

]E[fOT fRdf(s,:r)W(ds,d:r)] -0, 3.4)

]El fOT fRd f(s,2)W(ds,dx) 2‘| <K [fOT fRd |f(s,:r)|2dsd:c]. (3.5)

v

34/42



Space-time G-white noise

Stochastic integral w.r.t. space-time (G-white noise

e Denote by MZ([0,7] x R?) the completion of M?°([0,7"] x R?) under

- 1/2
the norm | - ||pp2 = (E[[O Jral: |2dxds]) .

@ The stochastic integral can be continuously extended to
MZ([0,T] x RY).

For each f,g € MQG([O,T] x Rd), 0<s<r<t<T, we have
Q) J Jpa f(u,2)W(du, dz) =
I fea £ (u, )W (du, dz) + [ [pa f(u, 2)W (du, dz).
(i) If v € L§;(Wo 5) is bounded,
S Jpalaf(r.z) + g(r,z))W (dr, dz)
= ozfst Jra f(r,z)W (dr, dx) +f5t Jra 9(r,z)W (dr, dx).
i) BLf," [pa f(r, 2)W (dr, dz)|F5] = 0.




Stochastic heat equations under sublinear expectation

@ Stochastic heat equations under sublinear expectation
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Stochastic heat equations under sublinear expectation

G-stochastic heat equation

Consider the stochastic heat equation driven by the multiplicative space-time
(G-white noise:

Du(t, ) = Lyu(t, ) +b(u) + a(u)W(t,z), 0<t<T,0< z < L,
%u(t,O) = %U(t, L) = 0, 0<t< T,
u(0,2) =ug(x), 0<x <L,

4.1)
where w is a bounded function and a(z),b(x) € Cr;p(R).

° W(t, x) is the generalized mixed derivative of space-time G-white noise
W.
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Stochastic heat equations under sublinear expectation

G-stochastic heat equation

o T=[0,T] xR
@ Space-time G-white noise W = {W(t,z) : t € [0,T],x € R}:

W(t,x) = W([0,t) x [0Ax,0vz]), forte[0,T],zeR.

@ The generalized mixed derivative W (¢, ) is defined by the test function
¢ € C°(R?) as follows:

f [ W) 2y dedr _f [wa, )‘%(t ®) .
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Stochastic heat equations under sublinear expectation

G-stochastic heat equation

o T=[0,T] xR
@ Space-time G-white noise W = {W(t,z) : t € [0,T],x € R}:

W(t,x) = W([0,t) x [0Ax,0vz]), forte[0,T],zeR.

@ The generalized mixed derivative W (¢, ) is defined by the test function
¢ € C°(R?) as follows:

f [ W) 2y dedr _f [wa, )aQ‘W ®) .

Proposition 23

For each ¢ € C°(R?), we have

fOTAW(t7w)¢(t,w)dxdt=fOTqus(t,x)W(dt,dx). (4.2)

38/42




Stochastic heat equations under sublinear expectation

G-stochastic heat equation

Definition 24

A spatio-temporal random field {u(¢,z) : (¢t,z) € [0,T] x [0, L]} is said to be
a mild solution of the nonlinear G-stochastic heat equation (4.1) if it satisfies
the following conditions:

(i) (u(t,x))o<tsr o<t € Sg([0,T] % [0, L]);
(i) For0<t<T,0<x < L,in L (F),

u(tr) = [ uo@ate )y [ [ o=, )bu(s,))dyds
t L
+f0 fo g(t—s,z,y)a(u(s,y))W(ds,dy).

e Here g(t,x,y) denotes the Green’s function for the linear heat equation.
o S%([0,T] x[0,L]) is the completiAon of Mz’o([9,T] x [0, L]) under the
norm [lufsz = supge;<r SUPo<y<r (E[Ju(t, 2)[]) 2.
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Stochastic heat equations under sublinear expectation

G-stochastic heat equation

Let ug(x) be bounded and a(x),b(x) be Lipschitz functions. Then nonlinear
stochastic heat equation (4.1) driven by the multiplicative space-time G-white
noise has a unique mild solution {u(t,x) : (t,z) € [0,T] x [0, L]}.
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Stochastic heat equations under sublinear expectation

G-stochastic heat equation

Let ug(x) be bounded and a(x),b(x) be Lipschitz functions. Then nonlinear
stochastic heat equation (4.1) driven by the multiplicative space-time G-white
noise has a unique mild solution {u(t,x) : (t,z) € [0,T] x [0, L]}.

The mild solution is also a weak solution of the G-stochastic heat equation. \
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Thank you
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