Space-time white noises in a nonlinear expectation space

Xiaojun Ji and Shige Peng, May 21, 2024

Dedicated to 30 Anniversary of Le Mans Mathematical Laboratory also to Jean-Pierre Lepeltier

- 1 Nolinear expectation theory
- 2 G-Gaussian random field and spatial G-white noise
- 3 Space-time *G*-white noise
- 4 Stochastic heat equations under sublinear expectation

Nolinear expectation theory

2 G-Gaussian random field and spatial G-white noise

3 Space-time G-white noise

Stochastic heat equations under sublinear expectation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Background

- Kolmogorov's foundation of probability theory: (Ω, \mathcal{F}, P)
 - Wiener probability space: $\Omega = C([0, \infty)), \mathcal{F} = \mathcal{B}(\Omega)$
 - Brownian motion: $B_t(\omega) = \omega_t, t \ge 0$.
- Knight (1921): Knightian uncertainty
- Choquet (1953): Choquet expectation, Capacity theory
- Peng (1997): g-expectation, conditional g-expectation

Background

- Kolmogorov's foundation of probability theory: (Ω, \mathcal{F}, P)
 - Wiener probability space: $\Omega = C([0, \infty)), \mathcal{F} = \mathcal{B}(\Omega)$
 - Brownian motion: $B_t(\omega) = \omega_t, t \ge 0$.
- Knight (1921): Knightian uncertainty
- Choquet (1953): Choquet expectation, Capacity theory
- Peng (1997): g-expectation, conditional g-expectation
- Peng (2004): Nonlinear (sublinear) expectation theory $(\Omega, \mathcal{H}, \mathbb{E})$
 - $\mathbb{E}[X] = \sup_{P \in \mathcal{P}} E_P[X] = \sup_{P \in \mathcal{P}} \int_{\Omega} X dP$

- Example: Nonlinear g-expectation
- Consider BSDE on $(\Omega, L_P^2(\mathcal{F}_T))$

$$-dY_t^{\xi} = g(Z_t)dt - Z_t^{\xi}dW_t, \quad Y_T^{\xi} = \xi \in L^2_P(\mathcal{F}_T)$$

The *g*-expectation and *g*-conditional expectation:

$$\hat{\mathbb{E}}^{g}[\xi|\mathcal{F}_{t}] \coloneqq Y_{t}^{\xi}, \quad :L_{P}^{2}(\mathcal{F}_{T}) \mapsto L_{P}^{2}(\mathcal{F}_{t}), \quad 0 \le t \le T.$$
$$\hat{\mathbb{E}}^{g}[\xi] = \hat{\mathbb{E}}^{g}[\xi|\mathcal{F}_{0}] \coloneqq Y_{0}^{\xi},.$$

Nonlinear expectation space $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

- Ω is a given set
- \mathcal{H} is a linear space of real-valued functions on Ω such that $X_1, \dots, X_n \in \mathcal{H}$, then $\varphi(X_1, \dots, X_n) \in \mathcal{H} \implies$ for each $\varphi \in C_{Lip}(\mathbb{R}^n)^1$.
- \mathcal{H} is considered as the space of random variables.

 $^{{}^{1}}C_{Lip}(\mathbb{R}^{n})$ denotes the set of all Lipschitz functions on \mathbb{R}^{n} \rightarrow $\langle \mathcal{P} \rangle \langle \mathcal{P} \rangle \langle \mathcal{P} \rangle \langle \mathcal{P} \rangle$

Nonlinear expectation space

Definition 1

A **nonlinear expectation** is a functional $\hat{\mathbb{E}} : \mathcal{H} \to \mathbb{R}$ satisfying the following properties: for each $X, Y \in \mathcal{H}$,

- (i) Monotonicity: $X \ge Y$ implies $\hat{\mathbb{E}}[X] \ge \hat{\mathbb{E}}[Y]$;
- (ii) **Constant preserving:** $\hat{\mathbb{E}}[c] = c$ for $c \in \mathbb{R}$;

Nonlinear expectation space

Definition 1

A **nonlinear expectation** is a functional $\hat{\mathbb{E}} : \mathcal{H} \to \mathbb{R}$ satisfying the following properties: for each $X, Y \in \mathcal{H}$,

- (i) Monotonicity: $X \ge Y$ implies $\hat{\mathbb{E}}[X] \ge \hat{\mathbb{E}}[Y]$;
- (ii) **Constant preserving:** $\hat{\mathbb{E}}[c] = c$ for $c \in \mathbb{R}$;

A sublinear expectation: (i) + (ii) + (ii)

- (iii) Sub-additivity: $\hat{\mathbb{E}}[X+Y] \leq \hat{\mathbb{E}}[X] + \hat{\mathbb{E}}[Y];$
- (iv) Positive homogeneity: $\hat{\mathbb{E}}[\lambda X] = \lambda \hat{\mathbb{E}}[X]$ for $\lambda > 0$.

The triple $(\Omega, \mathcal{H}, \mathbb{\hat{E}})$ is called a nonlinear (sublinear) expectation space.

Nonlinear expectation space

Definition 1

A **nonlinear expectation** is a functional $\hat{\mathbb{E}} : \mathcal{H} \to \mathbb{R}$ satisfying the following properties: for each $X, Y \in \mathcal{H}$,

- (i) Monotonicity: $X \ge Y$ implies $\hat{\mathbb{E}}[X] \ge \hat{\mathbb{E}}[Y]$;
- (ii) Constant preserving: $\hat{\mathbb{E}}[c] = c$ for $c \in \mathbb{R}$;

A sublinear expectation: (i) + (ii) + (ii)

- (iii) Sub-additivity: $\hat{\mathbb{E}}[X+Y] \leq \hat{\mathbb{E}}[X] + \hat{\mathbb{E}}[Y];$
- (iv) **Positive homogeneity:** $\hat{\mathbb{E}}[\lambda X] = \lambda \hat{\mathbb{E}}[X]$ for $\lambda > 0$.

The triple $(\Omega, \mathcal{H}, \mathbb{\hat{E}})$ is called a nonlinear (sublinear) expectation space.

If the inequality in (*iii*) becomes equality, Ê reduces to a linear expectation and (Ω, H, Ê) reduces to a linear expectation space.

Robust representation theorem

(v) Regularity: If {X_i}[∞]_{i=1} ⊂ H satisfies that X_i(ω) ↓ 0 as i → ∞, for each ω ∈ Ω, then

$$\lim_{i \to \infty} \hat{\mathbb{E}}[X_i] = 0.$$

Theorem 2

Let $\hat{\mathbb{E}}$ be a sublinear expectation on (Ω, \mathcal{H}) satisfying the regularity condition. Then there exists a weakly compact set \mathcal{P} of probability measures on $(\Omega, \sigma(\mathcal{H}))$, such that

$$\hat{\mathbb{E}}[\xi] = \sup_{P \in \mathcal{P}} E_P[\xi], \text{ for each } \xi \in \mathcal{H}.$$

 \mathcal{P} is called a set that represents $\mathbb{\hat{E}}$.

Robust representation theorem

(v) Regularity: If {X_i}[∞]_{i=1} ⊂ H satisfies that X_i(ω) ↓ 0 as i → ∞, for each ω ∈ Ω, then

$$\lim_{i \to \infty} \hat{\mathbb{E}}[X_i] = 0.$$

Theorem 2

Let $\hat{\mathbb{E}}$ be a sublinear expectation on (Ω, \mathcal{H}) satisfying the regularity condition. Then there exists a weakly compact set \mathcal{P} of probability measures on $(\Omega, \sigma(\mathcal{H}))$, such that

$$\hat{\mathbb{E}}[\xi] = \sup_{P \in \mathcal{P}} E_P[\xi], \text{ for each } \xi \in \mathcal{H}.$$

 \mathcal{P} is called a set that represents $\mathbb{\hat{E}}$.

• Capacity:

$$c(A) = \sup_{P \in \mathcal{P}} P(A), A \in \mathcal{B}(\Omega).$$

Distribution

Let $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ be a nonlinear (resp. sublinear) expectation space. For each *d*-dimensional random vector $X \in \mathcal{H}^d$, define $\mathbb{F}_X : C_{Lip}(\mathbb{R}^d) \to \mathbb{R}$ by

$$\mathbb{F}_{X}[\varphi] \coloneqq \hat{\mathbb{E}}[\varphi(X)], \ \forall \varphi \in C_{Lip}(\mathbb{R}^{d}).$$
(1.1)

 \mathbb{F}_X is called the **distribution** of *X*. (\mathbb{R}^d , $C_{Lip}(\mathbb{R}^d)$, \mathbb{F}_X) forms a sublinear expectation space.

Distribution

Let $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ be a nonlinear (resp. sublinear) expectation space. For each *d*-dimensional random vector $X \in \mathcal{H}^d$, define $\mathbb{F}_X : C_{Lip}(\mathbb{R}^d) \to \mathbb{R}$ by

$$\mathbb{F}_{X}[\varphi] \coloneqq \hat{\mathbb{E}}[\varphi(X)], \ \forall \varphi \in C_{Lip}(\mathbb{R}^{d}).$$
(1.1)

 \mathbb{F}_X is called the **distribution** of *X*. (\mathbb{R}^d , $C_{Lip}(\mathbb{R}^d)$, \mathbb{F}_X) forms a sublinear expectation space.

Definition 3

Two *d*-dimensional random vectors on sublinear expectation spaces $(\Omega_1, \mathcal{H}_1, \hat{\mathbb{E}}_1)$ and $(\Omega_2, \mathcal{H}_2, \hat{\mathbb{E}}_2)$, respectively, are called **identically distributed**, denoted by $X_1 \stackrel{d}{=} X_2$, if $\mathbb{F}_{X_1} = \mathbb{F}_{X_2}$, i.e.,

$$\hat{\mathbb{E}}_1[\varphi(X_1)] = \hat{\mathbb{E}}_2[\varphi(X_2)], \ \forall \varphi \in C_{Lip}(\mathbb{R}^d).$$
(1.2)

Independence

Definition 4

A *d*-dimensional random vector Y is said to be **independent** from an *n*-dimensional random vector X, denoted by $Y \perp X$, if for each test function $\varphi \in C_{Lip}(\mathbb{R}^{n+d})$,

$$\hat{\mathbb{E}}[\varphi(X,Y)] = \hat{\mathbb{E}}[\hat{\mathbb{E}}[\varphi(x,Y)]_{x=X}].$$
(1.3)

• " $Y \perp X$ " \Rightarrow " $X \perp Y$ " (See Peng (2010), Hu & Li (2014))

Independence

Definition 4

A *d*-dimensional random vector Y is said to be **independent** from an *n*-dimensional random vector X, denoted by $Y \perp X$, if for each test function $\varphi \in C_{Lip}(\mathbb{R}^{n+d})$,

$$\hat{\mathbb{E}}[\varphi(X,Y)] = \hat{\mathbb{E}}[\hat{\mathbb{E}}[\varphi(x,Y)]_{x=X}].$$
(1.3)

• " $Y \perp X$ " \Rightarrow " $X \perp Y$ " (See Peng (2010), Hu & Li (2014))

• Let \bar{X} and X be two d-dimensional random vectors on $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$. \bar{X} is called an **independent copy** of X if $\bar{X} \stackrel{d}{=} X$ and $\bar{X} \perp X$.

G-normal distribution

Definition 5

A *d*-dimensional random vector X on $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ is called *G*-normally distributed if

$$aX + b\bar{X} \stackrel{d}{=} \sqrt{a^2 + b^2 X}, \text{ for } a, b \ge 0,$$

where \bar{X} is an independent copy of X.

G-normal distribution

Definition 5

A *d*-dimensional random vector X on $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ is called *G*-normally distributed if

$$aX + b\bar{X} \stackrel{d}{=} \sqrt{a^2 + b^2}X$$
, for $a, b \ge 0$,

where \bar{X} is an independent copy of X.

•
$$\hat{\mathbb{E}}[X] = \hat{\mathbb{E}}[-X] = 0.$$

• For $d = 1, X \sim \mathcal{N}(0, [\underline{\sigma}^2, \overline{\sigma}^2])$, where $\underline{\sigma}^2 \coloneqq -\hat{\mathbb{E}}[-X^2], \overline{\sigma}^2 \coloneqq \hat{\mathbb{E}}[X^2]$.

$$G_X(a) \coloneqq \frac{1}{2} \hat{\mathbb{E}}[aX^2] = \frac{1}{2}\overline{\sigma}^2 a^+ - \frac{1}{2}\underline{\sigma}^2 a^-, \ \forall a \in \mathbb{R}.$$

• G_X is called the **generating function** of X.

Relation to the G-heat equation

Let G be the generating function of the G-normally distributed random variable X. For each $\varphi \in C_{Lip}(\mathbb{R}^d)$, define

$$u(t,x) \coloneqq \widehat{\mathbb{E}}[\varphi(x+\sqrt{t}X)], \ (t,x) \in [0,\infty) \times \mathbb{R}^d.$$
(1.4)

Proposition 6

u is the unique viscosity solution of the G-heat equation

$$\partial_t u - G(D_x^2 u) = 0, \ u|_{t=0} = \varphi(x).$$
 (1.5)

イロト イポト イヨト イヨト

Generating function

For a *d*-dimensional *G*-normally distributed random vector *X*, the generating function $G = G_X : \mathbb{S}(d) \mapsto \mathbb{R}$ is defined by

$$G_X(Q) \coloneqq \frac{1}{2} \hat{\mathbb{E}}[\langle QX, X \rangle], \ Q \in \mathbb{S}(d).$$

where $\mathbb{S}(d)$ denotes the collection of all $d \times d$ symmetric matrices.

- G is a sublinear and continuous function monotone in $Q \in S(d)$.
- There exists a bounded and closed set $\Upsilon \subset \mathbb{S}(d)$ such that

$$G(Q) = \frac{1}{2} \sup_{\nu \in \Upsilon} \operatorname{tr}[\nu Q], \ Q \in \mathbb{S}(d).$$

• A *d*-dimensional *G*-normally distributed random vector is denoted by $X \sim \mathcal{N}(0, \Upsilon)$.

Generating function

Proposition 7

Let ξ be a d-dimensional G-normally distributed random vector characterized by its generating function

$$G_{\xi}(Q) \coloneqq \frac{1}{2} \hat{\mathbb{E}}[\langle Q\xi, \xi \rangle], \ Q \in \mathbb{S}(d).$$

Then, for any matrix $K \in \mathbb{R}^{m \times d}$, $K\xi$ is also an *m*-dimensional *G*-normally distributed random vector. Its corresponding generating function is

$$G_{K\xi}(Q) = \frac{1}{2} \hat{\mathbb{E}}[\langle K^T Q K \xi, \xi \rangle], \ Q \in \mathbb{S}(m).$$

G-Brownian motion

Definition 8

A *d*-dimensional process $(B_t)_{t\geq 0}$ with $B_t \in \mathcal{H}^d$ for each $t \geq 0$ is called a *G*-Brownian motion if the following properties are satisfied:

(1)
$$B_0 = 0;$$

(2) For each
$$t, s \ge 0, B_{t+s} - B_t \sim \mathcal{N}(0, s\Upsilon);$$

(3) For each
$$t, s \ge 0$$
, $B_{t+s} - B_t \perp (B_{t_1}, \dots, B_{t_n})$, for each $n \in \mathbb{N}$ and $0 \le t_1 \le \dots \le t_n \le t$.

G-Brownian motion

Definition 8

A *d*-dimensional process $(B_t)_{t\geq 0}$ with $B_t \in \mathcal{H}^d$ for each $t \geq 0$ is called a *G*-Brownian motion if the following properties are satisfied:

(1)
$$B_0 = 0;$$

(2) For each
$$t, s \ge 0, B_{t+s} - B_t \sim \mathcal{N}(0, s\Upsilon);$$

(3) For each
$$t, s \ge 0$$
, $B_{t+s} - B_t \perp (B_{t_1}, \dots, B_{t_n})$, for each $n \in \mathbb{N}$ and $0 \le t_1 \le \dots \le t_n \le t$.

- $(B_{t_1}, \ldots, B_{t_n})$ is not *G*-normally distributed.
- G-Brownian motion is not a G-Gaussian process.

2 G-Gaussian random field and spatial G-white noise

3 Space-time G-white noise

Stochastic heat equations under sublinear expectation

G-Gaussian random field

Let Γ be a parameter set. Denote the family of all sets of finite indices by

$$\mathcal{J}_{\Gamma} \coloneqq \{\underline{\gamma} = (\gamma_1, \cdots, \gamma_n) \colon \forall n \in \mathbb{N}, \ \gamma_1, \cdots, \gamma_n \in \Gamma, \ \gamma_i \neq \gamma_j \text{ for } i \neq j \}.$$

Definition 9

A *d*-dimensional **random field** on $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ is a family of random variables $W = (W_{\gamma})_{\gamma \in \Gamma}$ such that $W_{\gamma} \in \mathcal{H}^d$ for each $\gamma \in \Gamma$.

G-Gaussian random field

Let Γ be a parameter set. Denote the family of all sets of finite indices by

$$\mathcal{J}_{\Gamma} \coloneqq \{\underline{\gamma} = (\gamma_1, \cdots, \gamma_n) \colon \forall n \in \mathbb{N}, \ \gamma_1, \cdots, \gamma_n \in \Gamma, \ \gamma_i \neq \gamma_j \text{ for } i \neq j \}.$$

Definition 9

A *d*-dimensional **random field** on $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ is a family of random variables $W = (W_{\gamma})_{\gamma \in \Gamma}$ such that $W_{\gamma} \in \mathcal{H}^d$ for each $\gamma \in \Gamma$.

Definition 10

A *d*-dimensional random field $(W_{\gamma})_{\gamma \in \Gamma}$ on $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ is called a *G*-Gaussian random field if for each $\underline{\gamma} = (\gamma_1, \dots, \gamma_n) \in \mathcal{J}_{\Gamma}$, the $(d \times n)$ -dimensional random vector $W_{\underline{\gamma}} = (W_{\gamma_1}, \dots, W_{\gamma_n})$ is *G*-normally distributed.

• G-Brownian motion \Rightarrow G-Gaussian random field

For each $\underline{\gamma} = (\gamma_1, \dots, \gamma_n) \in \mathcal{J}_{\Gamma}$, we define

$$G_{W_{\underline{\gamma}}}(Q) = \frac{1}{2} \hat{\mathbb{E}}[\langle QW_{\underline{\gamma}}, W_{\underline{\gamma}} \rangle], \quad Q \in \mathbb{S}(n \times d),$$

Then $(G_{W_{\underline{\gamma}}})_{\underline{\gamma}\in\mathcal{J}_{\Gamma}}$ constitutes a family of monotone sublinear and continuous functions satisfying the properties of consistency:

(1) Compatibility: For any $(\gamma_1, \dots, \gamma_n, \gamma_{n+1}) \in \mathcal{J}_{\Gamma}$ and $Q \in \mathbb{S}(n \times d)$,

$$G_{W_{\gamma_1},\cdots,W_{\gamma_n},W_{\gamma_{n+1}}}(\bar{Q}) = G_{W_{\gamma_1},\cdots,W_{\gamma_n}}(Q), \qquad (2.1)$$

where
$$\bar{Q} = \begin{pmatrix} Q & 0 \\ 0 & 0 \end{pmatrix} \in \mathbb{S}((n+1) \times d);$$

(2) Symmetry: For any permutation π of $\{1, \dots, n\}$ and $Q \in \mathbb{S}(n \times d)$,

$$G_{W_{\gamma_{\pi(1)}},\cdots,W_{\gamma_{\pi(n)}}}(Q) = G_{W_{\gamma_{1}},\cdots,W_{\gamma_{n}}}(\pi^{-1}(Q)), \qquad (2.2)$$

where the mapping π^{-1} : $\mathbb{S}(n \times d) \mapsto \mathbb{S}(n \times d)$ is defined by

$$(\pi^{-1}(Q))_{ij} = (q_{\pi^{-1}(i)\pi^{-1}(j)}), \quad i, j = 1, \dots, n \times d.$$

16/42

Existence of G-Gaussian random fields

Theorem 11

Let $(G_{\underline{\gamma}})_{\underline{\gamma}\in\mathcal{J}_{\Gamma}}$ be a family of monotonic and sublinear functions satisfying the compatibility condition (2.1) and symmetry condition (2.2). Then there exists a d-dimensional G-Gaussian random field $(W_{\gamma})_{\gamma\in\Gamma}$ on a sublinear expectation space $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ such that for each $\underline{\gamma} = (\gamma_1, \dots, \gamma_n) \in \mathcal{J}_{\Gamma}$, $W_{\underline{\gamma}} = (W_{\gamma_1}, \dots, W_{\gamma_n})$ is G-normally distributed and

$$G_{W_{\underline{\gamma}}}(Q) = \frac{1}{2} \hat{\mathbb{E}}[\langle QW_{\underline{\gamma}}, W_{\underline{\gamma}} \rangle] = G_{\underline{\gamma}}(Q), \text{ for any } Q \in \mathbb{S}(n \times d).$$

・ロト ・ ア・ ・ ア・ ・ ア・ ア

Existence of G-Gaussian random fields

Theorem 12

If there exists another Gaussian random field $(\bar{W}_{\gamma})_{\gamma\in\Gamma}$, with the same index set Γ , defined on a sublinear expectation space $(\bar{\Omega}, \bar{\mathcal{H}}, \bar{\mathbb{E}})$ such that for each $\underline{\gamma} = (\gamma_1, \dots, \gamma_n) \in \mathcal{J}_{\Gamma}, \bar{W}_{\underline{\gamma}}$ is G-normally distributed with the same generating function, namely,

$$\frac{1}{2}\overline{\mathbb{E}}[\langle Q\bar{W}_{\underline{\gamma}}, \bar{W}_{\underline{\gamma}} \rangle] = G_{\underline{\gamma}}(Q) \text{ for any } Q \in \mathbb{S}(n \times d).$$

Then we have $W \stackrel{d}{=} \overline{W}$.

Existence of G-Gaussian random fields

Theorem 12

If there exists another Gaussian random field $(\bar{W}_{\gamma})_{\gamma\in\Gamma}$, with the same index set Γ , defined on a sublinear expectation space $(\bar{\Omega}, \bar{\mathcal{H}}, \bar{\mathbb{E}})$ such that for each $\underline{\gamma} = (\gamma_1, \dots, \gamma_n) \in \mathcal{J}_{\Gamma}, \bar{W}_{\underline{\gamma}}$ is G-normally distributed with the same generating function, namely,

$$\frac{1}{2}\overline{\mathbb{E}}[\langle Q\bar{W}_{\underline{\gamma}}, \bar{W}_{\underline{\gamma}} \rangle] = G_{\underline{\gamma}}(Q) \text{ for any } Q \in \mathbb{S}(n \times d).$$

Then we have $W \stackrel{d}{=} \overline{W}$.

Remark

If $\Gamma = \mathbb{R}^+$, $W = (W_{\gamma})_{\gamma \in \Gamma}$ becomes a *G*-Gaussian process which has been studied in Peng (2011).

Spatial G-white noise

Let $\Gamma = \mathcal{B}_0(\mathbb{R}^d) = \{A \in \mathcal{B}(\mathbb{R}^d), \lambda_A < \infty\}$, where λ_A denotes the Lebesgue measure of $A \in \mathcal{B}(\mathbb{R}^d)$.

Definition 13

Let $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ be a sublinear expectation space. A 1-dimensional *G*-Gaussian random field $\mathbb{W} = (\mathbb{W}_A)_{A \in \Gamma}$ is called a 1-dimensional *G*-white noise if (1) For all $A \in \Gamma$, $\hat{\mathbb{E}}[\mathbb{W}_A^2] = \overline{\sigma}^2 \lambda_A$, $-\hat{\mathbb{E}}[-\mathbb{W}_A^2] = \underline{\sigma}^2 \lambda_A$; (2) For each $A_1, A_2 \in \Gamma$, $A_1 \cap A_2 = \emptyset$, we have

$$\hat{\mathbb{E}}[\mathbb{W}_{A_1}\mathbb{W}_{A_2}] = \hat{\mathbb{E}}[-\mathbb{W}_{A_1}\mathbb{W}_{A_2}] = 0, \qquad (2.3)$$

$$\hat{\mathbb{E}}[(\mathbb{W}_{A_1\cup A_2} - \mathbb{W}_{A_1} - \mathbb{W}_{A_2})^2] = 0, \qquad (2.4)$$

where $0 \le \underline{\sigma}^2 \le \overline{\sigma}^2$ are any given numbers.

Existence of G-white noise

Set

$$G(a) = \frac{1}{2} (\overline{\sigma}^2 a^+ - \underline{\sigma}^2 a^-), \ a \in \mathbb{R}.$$
 (2.5)

For each $\gamma = (A_1, \dots, A_n), A_j \in \Gamma = \mathcal{B}_0(\mathbb{R}^d)$, define a sublinear and monotone function $\overline{G}_{\gamma}(\cdot) : \mathbb{S}(n) \mapsto \mathbb{R}$ as follows:

$$G_{A_1,\dots,A_n}(Q) = G\left(\sum_{i,j=1}^n q_{ij}\lambda_{A_i\cap A_j}\right), \ Q = (q_{ij})_{i,j=1}^n \in \mathbb{S}(n).$$
(2.6)

(G_γ)_{γ∈J_Γ} satisfies the compatibility condition (2.1) and symmetry condition (2.2).

Existence of G-white noise

Theorem 14

For each given numbers $0 \leq \underline{\sigma}^2 \leq \overline{\sigma}^2$, let the family of generating functions $(G_{\underline{\gamma}})_{\underline{\gamma}\in\mathcal{J}_{\Gamma}}$ be defined as in (2.6). Then there exists a 1-dimensional spatial *G*-white noise $(\mathbb{W}_{\gamma})_{\gamma\in\Gamma}$ on a sublinear expectation space $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ such that, for each $\underline{\gamma} = (A_1, \dots, A_n) \in \mathcal{J}_{\Gamma}$, $Q = (q_{ij})_{i,j=1}^n \in \mathbb{S}(n)$,

$$G_{\mathbb{W}_{\underline{\gamma}}}(Q) = \frac{1}{2} \hat{\mathbb{E}}[\langle Q \mathbb{W}_{\underline{\gamma}}, \mathbb{W}_{\underline{\gamma}} \rangle] = G(\sum_{i,j=1}^{n} q_{ij} \lambda_{A_i \cap A_j}).$$

 Denote by L²_G(W) the completion of *H* under the Banach norm
 || · ||₂ = (Ê[|·|²])^{1/2}. Then (Ω, L²_G(W), Ê) forms a complete sublinear
 expectation space.

Invariance under rotation and translation

Proposition 15

For each $p \in \mathbb{R}^d$ and $O \in \mathbb{O}(d) := \{O \in \mathbb{R}^{d \times d} : O^T = O^{-1}\}$, we set

$$T_{p,O}(A) = \{ Ox + p : x \in A \}, \text{ for } A \in \mathcal{B}_0(\mathbb{R}^d).$$

Then, for each $A_1, \dots, A_n \in \mathcal{B}_0(\mathbb{R}^d)$, we have

$$(\mathbb{W}_{A_1},\cdots,\mathbb{W}_{A_n}) \stackrel{d}{=} (\mathbb{W}_{T_{p,O}(A_1)},\cdots,\mathbb{W}_{T_{p,O}(A_n)}).$$

Namely, the finite-dimensional distributions of \mathbb{W} are invariant under rotations and translations.

Stochastic calculus w.r.t. G-white noise

For any simple function

$$f(x) = \sum_{i=1}^{n} a_i \mathbf{1}_{A_i}(x), \ \forall n \in \mathbb{N}, a_1, \cdots, a_n \in \mathbb{R}, A_1, \cdots, A_n \in \Gamma,$$

define the stochastic integral w.r.t. the spatial G-white noise as follows:

$$\int_{\mathbb{R}^d} f(x) \mathbb{W}(dx) = \sum_{i=1}^n a_i \int_{\mathbb{R}^d} \mathbf{1}_{A_i}(x) \mathbb{W}(dx) = \sum_{i=1}^n a_i \mathbb{W}_{A_i}.$$

Denote $L^{2}(\mathbb{R}^{d}) = \{f : ||f||_{L^{2}}^{2} = \int_{\mathbb{R}^{d}} |f(x)|^{2} dx < \infty.\}$

・ロト (P) (E) (E) E のQで 23/42

Stochastic calculus w.r.t. G-white noise

Lemma 16

If $f : \mathbb{R}^d \to \mathbb{R}$ is a simple function, then

$$\mathbb{\hat{E}}\left[\left|\int_{\mathbb{R}^d} f(x)\mathbb{W}(dx)\right|^2\right] \le \overline{\sigma}^2 \|f\|_{L^2}^2.$$

• The stochastic integral can be continuously extended to the whole domain of $L^2(\mathbb{R}^d)$.

Theorem 17

 $\{\int_{\mathbb{R}^d} f(x) \mathbb{W}(dx) : f \in L^2(\mathbb{R}^d)\}$ is a G-Gaussian random field.

Example 18

Let $\{\mathbb{W}_A, A \in \mathcal{B}_0(\mathbb{R})\}$ be a 1-dimensional *G*-white noise. Define $\mathbb{B}_t = \mathbb{W}([0, t]), t \in \mathbb{R}_+$, then

$$\hat{\mathbb{E}}[\mathbb{B}_t \mathbb{B}_s] = \overline{\sigma}^2 \lambda_{[0,t] \cap [0,s]} = \overline{\sigma}^2(s \wedge t).$$

Unlike the classical case, \mathbb{B}_t is no longer a *G*-Brownian motion, although $\mathbb{B}_t \stackrel{d}{=} N(\{0\} \times [\underline{\sigma}^2 t, \overline{\sigma}^2 t])$ for each $t \ge 0$.

1 Nolinear expectation theory

2 G-Gaussian random field and spatial G-white noise

3 Space-time *G*-white noise

4 Stochastic heat equations under sublinear expectati

< □ ▶ < □ ▶ < 臣 ▶ < 臣 ▶ 差 ♪ 26/42

Space-time G-white noise

Set $\Gamma = \{ [s,t) \times A : 0 \le s \le t < \infty, A \in \mathcal{B}_0(\mathbb{R}^d) \}.$

Definition 19

A random field $\{\mathbf{W}([s,t) \times A)\}_{([s,t) \times A) \in \Gamma}$ on $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ is called a 1-dimensional **space-time** *G*-white noise if it satisfies the following conditions:

(i) For each fixed [s,t), {W([s,t) × A)}_{A∈B0}(ℝ^d) is a 1-dimensional spatial G-white noise that has the same family of finite-dimensional distributions as (√t - sW_A)_{A∈B0}(ℝ^d);

(ii) For any
$$r \leq s \leq t$$
, $A \in \mathcal{B}_0(\mathbb{R}^d)$,

$$\mathbf{W}([r,s) \times A) + \mathbf{W}([s,t) \times A) = \mathbf{W}([r,t) \times A);$$

(iii) For any $t_i \leq s \leq t$ and $A_i \in \mathcal{B}_0(\mathbb{R}^d)$, $i = 1, \dots, n$,

$$\mathbf{W}([s,t) \times A) \perp (\mathbf{W}([s_1,t_1) \times A_1), \cdots, \mathbf{W}([s_n,t_n) \times A_n)),$$

where $(\mathbb{W}_A)_{A \in \mathcal{B}_0(\mathbb{R}^d)}$ is a 1-dimensional spatial *G*-white noise.

Remark

It is important to mention that $\{\mathbf{W}([s,t) \times A), 0 \le s \le t < \infty, A \in \mathcal{B}_0(\mathbb{R}^d)\}\$ is no longer a *G*-Gaussian random field.

(日) (同) (E) (E) (E)

28/42

Existence of G-white noise

Set

$$\Omega = \left\{ \omega \in (\mathbb{R})^{\Gamma} : \omega([r,t) \times A) = \omega([r,s) \times A) + \omega([s,t) \times A), \\ \forall r \le s \le t, \ A \in \mathcal{B}_0(\mathbb{R}^d) \right\},$$

and for each $\omega \in \Omega$, define the canonical process $(\mathbf{W}_{\gamma})_{\gamma \in \Gamma}$ by

$$\mathbf{W}([s,t) \times A)(\omega) = \omega([s,t) \times A), \ \forall 0 \le s \le t < \infty, \ A \in \mathcal{B}_0(\mathbb{R}^d).$$

Set $\mathcal{F}_T = \sigma\{\mathbf{W}([s,t) \times A), 0 \le s \le t \le T, A \in \mathcal{B}_0(\mathbb{R}^d)\}, \ \mathcal{F} = \bigvee_{T \ge 0} \mathcal{F}_T, \text{ and}$

$$L_{ip}(\mathcal{F}_T) = \{ \varphi(\mathbf{W}([s_1, t_1) \times A_1), \cdots, \mathbf{W}([s_n, t_n) \times A_n)), \forall n \in \mathbb{N}, s_i \leq t_i \leq T, \\ i = 1, \cdots, n, A_1, \cdots, A_n \in \mathcal{B}_0(\mathbb{R}^d), \varphi \in C_{Lip}(\mathbb{R}^n) \},$$

$$L_{ip}(\mathcal{F}) = \bigcup_{n=1}^{\infty} L_{ip}(\mathcal{F}_n).$$

For $X \in L_{ip}(\mathcal{F})$ with the form

$$X = \varphi(\mathbf{W}([0,t_1) \times A_1), \cdots, \mathbf{W}([0,t_1) \times A_m), \cdots, \mathbf{W}([t_{n-1},t_n) \times A_1), \cdots, \mathbf{W}([t_{n-1},t_n) \times A_m)),$$

where $0 < t_1 < \cdots < t_n < \infty$, $\{A_1, \cdots, A_m\} \subset \mathcal{B}_0(\mathbb{R}^d)$ are mutually disjoint, and $\varphi \in C_{Lip}(\mathbb{R}^{n \times m})$. Define

$$\hat{\mathbb{E}}[X] \coloneqq \tilde{\mathbb{E}}[\varphi(\sqrt{t_1}\xi_1^{(1)}, \dots, \sqrt{t_1}\xi_1^{(m)}, \dots, \sqrt{t_n - t_{n-1}}\xi_n^{(1)}, \dots, \sqrt{t_n - t_{n-1}}\xi_n^{(m)})],$$

where $\{\xi_1, \dots, \xi_n\}, \xi_j = (\xi_j^{(1)}, \dots, \xi_j^{(m)}), 1 \le j \le n$, are i. i. d. *G*-normally distributed random vectors on a sublinear expectation space $(\tilde{\Omega}, \tilde{\mathcal{H}}, \tilde{\mathbb{E}})$.

<ロト<部ト<単ト<単ト<単ト<単ト 30/42 The conditional expectation of X under \mathcal{F}_t , $t_j \leq t < t_{j+1}$, is defined by

$$\begin{split} \hat{\mathbb{E}}[X|\mathcal{F}_t] &:= \hat{\mathbb{E}}[\varphi(\mathbf{W}([0,t_1) \times A_1), \cdots, \mathbf{W}([0,t_1) \times A_m), \cdots, \\ \mathbf{W}([t_{n-1},t_n) \times A_1), \cdots, \mathbf{W}([t_{n-1},t_n) \times A_m))|\mathcal{F}_t] \\ &= \psi(\mathbf{W}([0,t_1) \times A_1), \cdots, \mathbf{W}([0,t_1) \times A_m), \cdots, \\ \mathbf{W}([t_{j-1},t_j) \times A_1), \cdots, \mathbf{W}([t_{j-1},t_j) \times A_m)), \end{split}$$

where

$$\psi(x_{11}, \dots, x_{jm}) = \tilde{\mathbb{E}}[\varphi(x_{11}, \dots, x_{jm}, \sqrt{t_{j+1} - t_j} \xi_{j+1}^{(1)}, \dots, \sqrt{t_{j+1} - t_j} \xi_{j+1}^{(m)}, \dots, \sqrt{t_n - t_{n-1}} \xi_n^{(1)}, \dots, \sqrt{t_n - t_{n-1}} \xi_n^{(m)})].$$

- The canonical process (W_γ)_{γ∈Γ} is a space-time white noise on (Ω, L_{ip}(F), Ê, (Ê[·|F_t])_{t≥0}).
- For each $p \ge 1$, denote by $\mathbf{L}_{G}^{p}(\mathbf{W}_{[0,T]})$ (resp., $\mathbf{L}_{G}^{p}(\mathbf{W})$) the completion of $L_{ip}(\mathcal{F}_{T})$ (resp., $L_{ip}(\mathcal{F})$) under the form $||X||_{p} \coloneqq (\hat{\mathbb{E}}[|X|^{p}])^{1/p}$.

Proposition 20

For any $X, Y \in \mathbf{L}^p_G(\mathbf{W})$, $\eta \in \mathbf{L}^p_G(\mathbf{W}_{[0,t]})$, we have

(i) $\hat{\mathbb{E}}[X|\mathcal{F}_t] \ge \hat{\mathbb{E}}[Y|\mathcal{F}_t]$ for $X \ge Y$.

(ii)
$$\mathbb{\hat{E}}[\eta | \mathcal{F}_t] = \eta$$
.

- (iii) $\hat{\mathbb{E}}[X + Y | \mathcal{F}_t] \leq \hat{\mathbb{E}}[X | \mathcal{F}_t] + \hat{\mathbb{E}}[Y | \mathcal{F}_t].$
- (iv) $\hat{\mathbb{E}}[\eta X | \mathcal{F}_t] = \eta^+ \hat{\mathbb{E}}[X | \mathcal{F}_t] + \eta^- \hat{\mathbb{E}}[-X | \mathcal{F}_t]$ if η is bounded.
- (v) $\hat{\mathbb{E}}[\hat{\mathbb{E}}[X|\mathcal{F}_t]|\mathcal{F}_s] = \hat{\mathbb{E}}[X|\mathcal{F}_{t\wedge s}]$ for $s \ge 0$.

• Let $\mathbf{M}^{2,0}([0,T] \times \mathbb{R}^d)$ be the collection of simple random fields with the form:

$$f(s,x;\omega) = \sum_{i=0}^{n-1} \sum_{j=1}^{m} X_{ij}(\omega) \mathbf{1}_{A_j}(x) \mathbf{1}_{[t_i,t_{i+1})}(s),$$
(3.1)

where $X_{ij} \in \mathbf{L}_G^2(\mathbf{W}_{[0,t_i]})$, $i = 0, \dots, n-1, j = 1, \dots, m$, $0 = t_0 < \dots < t_n = T$, and $\{A_j\}_{j=1}^m \subset \mathcal{B}_0(\mathbb{R}^d)$ is a mutually disjoint sequence.

• Bochner's integral of *f*:

$$\int_{\mathbb{R}^d} \int_0^T f(s, x) ds dx \coloneqq \sum_{i=0}^{n-1} \sum_{j=1}^m X_{ij} (t_{i+1} - t_i) \lambda_{A_j}.$$
 (3.2)

The stochastic integral w.r.t. the space-time G-white noise \mathbf{W} can be defined as follows:

$$\int_{0}^{T} \int_{\mathbb{R}^{d}} f(s, x) \mathbf{W}(ds, dx) \coloneqq \sum_{i=0}^{n-1} \sum_{j=1}^{m} X_{ij} \mathbf{W}([t_{i}, t_{i+1}) \times A_{j}).$$
(3.3)

• $\mathbf{M}^{2,0}([0,T] \times \mathbb{R}^d) \mapsto \mathbf{L}^2_G(\mathbf{W}_{[0,T]})$

The stochastic integral w.r.t. the space-time G-white noise \mathbf{W} can be defined as follows:

$$\int_{0}^{T} \int_{\mathbb{R}^{d}} f(s, x) \mathbf{W}(ds, dx) \coloneqq \sum_{i=0}^{n-1} \sum_{j=1}^{m} X_{ij} \mathbf{W}([t_{i}, t_{i+1}) \times A_{j}).$$
(3.3)

•
$$\mathbf{M}^{2,0}([0,T] \times \mathbb{R}^d) \mapsto \mathbf{L}^2_G(\mathbf{W}_{[0,T]})$$

Lemma 21

For any simple random field $f \in \mathbf{M}^{2,0}([0,T] \times \mathbb{R}^d)$,

$$\hat{\mathbb{E}}\left[\int_{0}^{T}\int_{\mathbb{R}^{d}}f(s,x)\mathbf{W}(ds,dx)\right] = 0,$$

$$\hat{\mathbb{E}}\left[\left|\int_{0}^{T}\int_{\mathbb{R}^{d}}f(s,x)\mathbf{W}(ds,dx)\right|^{2}\right] \leq \overline{\sigma}^{2}\hat{\mathbb{E}}\left[\int_{0}^{T}\int_{\mathbb{R}^{d}}|f(s,x)|^{2}dsdx\right].$$
(3.4)
(3.5)

- Denote by $\mathbf{M}_G^2([0,T] \times \mathbb{R}^d)$ the completion of $\mathbf{M}^{2,0}([0,T] \times \mathbb{R}^d)$ under the norm $\|\cdot\|_{\mathbf{M}^2} \coloneqq \left(\hat{\mathbb{E}}[\int_0^T \int_{\mathbb{R}^d} |\cdot|^2 dx ds]\right)^{1/2}$.
- The stochastic integral can be continuously extended to $\mathbf{M}_{G}^{2}([0,T] \times \mathbb{R}^{d}).$

Proposition 22

For each $f, g \in \mathbf{M}^2_G([0, T] \times \mathbb{R}^d)$, $0 \le s \le r \le t \le T$, we have

(i)
$$\int_{s}^{t} \int_{\mathbb{R}^{d}} f(u, x) \mathbf{W}(du, dx) = \int_{s}^{r} \int_{\mathbb{R}^{d}} f(u, x) \mathbf{W}(du, dx) + \int_{r}^{t} \int_{\mathbb{R}^{d}} f(u, x) \mathbf{W}(du, dx).$$

(ii) If
$$\alpha \in \mathbf{L}_{G}^{1}(\mathbf{W}_{[0,s]})$$
 is bounded,

$$\int_{s}^{t} \int_{\mathbb{R}^{d}} (\alpha f(r,x) + g(r,x)) \mathbf{W}(dr,dx)$$

$$= \alpha \int_{s}^{t} \int_{\mathbb{R}^{d}} f(r,x) \mathbf{W}(dr,dx) + \int_{s}^{t} \int_{\mathbb{R}^{d}} g(r,x) \mathbf{W}(dr,dx).$$
(iii) $\hat{\mathbb{E}}[\int_{s}^{T} \int_{\mathbb{R}^{d}} f(r,x) \mathbf{W}(dr,dx) | \mathcal{F}_{s}] = 0.$

Nolinear expectation theory

2 G-Gaussian random field and spatial G-white noise

3 Space-time G-white noise

Stochastic heat equations under sublinear expectation

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ 36/42

Consider the stochastic heat equation driven by the multiplicative space-time G-white noise:

$$\begin{cases} \frac{\partial}{\partial t}u(t,x) = \frac{\partial^2}{\partial x^2}u(t,x) + b(u) + a(u)\dot{\mathbf{W}}(t,x), \ 0 < t \le T, 0 \le x \le L, \\ \frac{\partial}{\partial x}u(t,0) = \frac{\partial}{\partial x}u(t,L) = 0, \ 0 < t \le T, \\ u(0,x) = u_0(x), \ 0 \le x \le L, \end{cases}$$

$$(4.1)$$

where u_0 is a bounded function and $a(x), b(x) \in C_{Lip}(\mathbb{R})$.

• $\dot{\mathbf{W}}(t,x)$ is the generalized mixed derivative of space-time *G*-white noise \mathbf{W} .

◆ロ▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣・の

- $\Gamma = [0, T] \times \mathbb{R}$
- Space-time G-white noise $\mathbf{W} = {\mathbf{W}(t, x) : t \in [0, T], x \in \mathbb{R}}:$

 $\mathbf{W}(t,x) \coloneqq \mathbf{W}([0,t) \times [0 \land x, 0 \lor x]), \text{ for } t \in [0,T], x \in \mathbb{R}.$

• The generalized mixed derivative $\dot{\mathbf{W}}(t, x)$ is defined by the test function $\phi \in C_c^{\infty}(\mathbb{R}^2)$ as follows:

$$\int_0^T \int_{\mathbb{R}} \dot{\mathbf{W}}(t,x)\phi(t,x)dxdt \coloneqq \int_0^T \int_{\mathbb{R}} \mathbf{W}(t,x)\frac{\partial^2 \phi(t,x)}{\partial t \partial x}dxdt.$$

- $\Gamma = [0, T] \times \mathbb{R}$
- Space-time G-white noise $\mathbf{W} = {\mathbf{W}(t, x) : t \in [0, T], x \in \mathbb{R}}:$

$$\mathbf{W}(t,x) \coloneqq \mathbf{W}([0,t) \times [0 \land x, 0 \lor x]), \text{ for } t \in [0,T], x \in \mathbb{R}.$$

• The generalized mixed derivative $\dot{\mathbf{W}}(t, x)$ is defined by the test function $\phi \in C_c^{\infty}(\mathbb{R}^2)$ as follows:

$$\int_0^T \int_{\mathbb{R}} \dot{\mathbf{W}}(t,x)\phi(t,x)dxdt \coloneqq \int_0^T \int_{\mathbb{R}} \mathbf{W}(t,x)\frac{\partial^2 \phi(t,x)}{\partial t \partial x}dxdt.$$

Proposition 23

For each $\phi \in C_c^{\infty}(\mathbb{R}^2)$, we have

$$\int_0^T \int_{\mathbb{R}} \dot{\mathbf{W}}(t,x)\phi(t,x)dxdt = \int_0^T \int_{\mathbb{R}} \phi(t,x)\mathbf{W}(dt,dx).$$
(4.2)

Definition 24

A spatio-temporal random field $\{u(t, x) : (t, x) \in [0, T] \times [0, L]\}$ is said to be a mild solution of the nonlinear G-stochastic heat equation (4.1) if it satisfies the following conditions:

- (i) $(u(t,x))_{0 < t \le T, 0 \le x \le L} \in \mathbf{S}_G^2([0,T] \times [0,L]);$
- (ii) For $0 < t \le T$, $0 \le x \le L$, in $\mathbf{L}_G^2(\mathcal{F}_t)$,

$$u(t,x) = \int_0^L u_0(y)g(t,x,y)dy + \int_0^t \int_0^L g(t-s,x,y)b(u(s,y))dyds + \int_0^t \int_0^L g(t-s,x,y)a(u(s,y))\mathbf{W}(ds,dy).$$

Here g(t,x,y) denotes the Green's function for the linear heat equation.
S²_G([0,T]×[0,L]) is the completion of M^{2,0}([0,T]×[0,L]) under the norm ||u||_{S²} = sup_{0≤t≤T} sup_{0≤x≤L}(Ê[|u(t,x)|²])^{1/2}.

Theorem 25

Let $u_0(x)$ be bounded and a(x), b(x) be Lipschitz functions. Then nonlinear stochastic heat equation (4.1) driven by the multiplicative space-time *G*-white noise has a unique mild solution $\{u(t,x): (t,x) \in [0,T] \times [0,L]\}$.

Theorem 25

Let $u_0(x)$ be bounded and a(x), b(x) be Lipschitz functions. Then nonlinear stochastic heat equation (4.1) driven by the multiplicative space-time *G*-white noise has a unique mild solution $\{u(t,x): (t,x) \in [0,T] \times [0,L]\}$.

Remark

The mild solution is also a weak solution of the G-stochastic heat equation.

Thank you