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Nolinear expectation theory

Background

Kolmogorov’s foundation of probability theory: (Ω,F , P )

Wiener probability space: Ω = C([0,∞)),F = B(Ω)
Brownian motion: Bt(ω) = ωt, t ≥ 0.

Knight (1921): Knightian uncertainty

Choquet (1953): Choquet expectation, Capacity theory

Peng (1997): g-expectation, conditional g-expectation

Peng (2004): Nonlinear (sublinear) expectation theory (Ω,H,E)

E[X] = supP ∈P EP [X] = supP ∈P ∫ΩXdP
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Nolinear expectation theory

Example: Nonlinear g-expectation

Consider BSDE on (Ω, L2
P (FT ))

−dY ξ
t = g(Zt)dt −Z

ξ
t dWt, Y ξ

T = ξ ∈ L2
P (FT )

The g-expectation and g-conditional expectation:

Êg[ξ∣Ft] ∶= Y ξ
t , ∶ L2

P (FT )↦ L2
P (Ft), 0 ≤ t ≤ T.

Êg[ξ] = Êg[ξ∣F0] ∶= Y
ξ

0 ,.
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Nolinear expectation theory
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Nolinear expectation theory

Nonlinear expectation space (Ω,H, Ê)

Ω is a given set
H is a linear space of real-valued functions on Ω such that

X1,⋯,Xn ∈H, then ϕ(X1,⋯,Xn) ∈H Ô⇒ for each ϕ ∈ CLip(Rn)1.

H is considered as the space of random variables.

1CLip(Rn) denotes the set of all Lipschitz functions on Rn
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Nolinear expectation theory

Nonlinear expectation space

Definition 1

A nonlinear expectation is a functional Ê ∶H → R satisfying the following
properties: for each X,Y ∈H,

(i) Monotonicity: X ≥ Y implies Ê[X] ≥ Ê[Y ];

(ii) Constant preserving: Ê[c] = c for c ∈ R;

A sublinear expectation: (i) + (ii) +

(iii) Sub-additivity: Ê[X + Y ] ≤ Ê[X] + Ê[Y ];

(iv) Positive homogeneity: Ê[λX] = λÊ[X] for λ > 0.

The triple (Ω,H, Ê) is called a nonlinear (sublinear) expectation space.

If the inequality in (iii) becomes equality, Ê reduces to a linear
expectation and (Ω,H, Ê) reduces to a linear expectation space.
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Nolinear expectation theory

Robust representation theorem

(v) Regularity: If {Xi}
∞
i=1 ⊂H satisfies that Xi(ω) ↓ 0 as i→∞, for each

ω ∈ Ω, then
lim
i→∞

Ê[Xi] = 0.

Theorem 2

Let Ê be a sublinear expectation on (Ω,H) satisfying the regularity
condition. Then there exists a weakly compact set P of probability measures
on (Ω, σ(H)), such that

Ê[ξ] = sup
P ∈P

EP [ξ], for each ξ ∈H.

P is called a set that represents Ê.

Capacity:
c(A) = sup

P ∈P
P (A), A ∈ B(Ω).
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Nolinear expectation theory

Distribution

Let (Ω,H, Ê) be a nonlinear (resp. sublinear) expectation space. For each
d-dimensional random vector X ∈Hd, define FX ∶ CLip(Rd)→ R by

FX[ϕ] ∶= Ê[ϕ(X)], ∀ϕ ∈ CLip(Rd). (1.1)

FX is called the distribution of X . (Rd,CLip(Rd),FX) forms a sublinear
expectation space.

Definition 3
Two d-dimensional random vectors on sublinear expectation spaces
(Ω1,H1, Ê1) and (Ω2,H2, Ê2), respectively, are called identically
distributed, denoted by X1

d
=X2, if FX1 = FX2 , i.e.,

Ê1[ϕ(X1)] = Ê2[ϕ(X2)], ∀ϕ ∈ CLip(Rd). (1.2)
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Nolinear expectation theory

Independence

Definition 4
A d-dimensional random vector Y is said to be independent from an
n-dimensional random vector X , denoted by Y áX , if for each test function
ϕ ∈ CLip(Rn+d),

Ê[ϕ(X,Y )] = Ê[Ê[ϕ(x,Y )]x=X]. (1.3)

“Y áX”⇏ “X á Y ” (See Peng (2010), Hu & Li (2014))

Let X̄ and X be two d-dimensional random vectors on (Ω,H, Ê). X̄ is
called an independent copy of X if X̄ d

=X and X̄ áX .
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Nolinear expectation theory

G-normal distribution

Definition 5

A d-dimensional random vector X on (Ω,H, Ê) is called G-normally
distributed if

aX + bX̄
d
=
√
a2 + b2X, for a, b ≥ 0,

where X̄ is an independent copy of X .

Ê[X] = Ê[−X] = 0.

For d = 1, X ∼ N (0, [σ2, σ2]), where σ2 ∶= −Ê[−X2], σ2 ∶= Ê[X2].

GX(a) ∶=
1

2
Ê[aX2] =

1

2
σ2a+ −

1

2
σ2a−, ∀a ∈ R.

GX is called the generating function of X .
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Nolinear expectation theory

Relation to the G-heat equation

Let G be the generating function of the G-normally distributed random
variable X . For each ϕ ∈ CLip(Rd), define

u(t, x) ∶= Ê[ϕ(x +
√
tX)], (t, x) ∈ [0,∞) ×Rd. (1.4)

Proposition 6

u is the unique viscosity solution of the G-heat equation

∂tu −G(D2
xu) = 0, u∣t=0 = ϕ(x). (1.5)
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Nolinear expectation theory

Generating function

For a d-dimensional G-normally distributed random vector X , the generating
function G = GX ∶ S(d)↦ R is defined by

GX(Q) ∶=
1

2
Ê[⟨QX,X⟩], Q ∈ S(d).

where S(d) denotes the collection of all d × d symmetric matrices.

G is a sublinear and continuous function monotone in Q ∈ S(d).

There exists a bounded and closed set Υ ⊂ S(d) such that

G(Q) =
1

2
sup
ν∈Υ

tr[νQ], Q ∈ S(d).

A d-dimensional G-normally distributed random vector is denoted by
X ∼ N (0,Υ).
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Nolinear expectation theory

Generating function

Proposition 7
Let ξ be a d-dimensional G-normally distributed random vector characterized
by its generating function

Gξ(Q) ∶=
1

2
Ê[⟨Qξ, ξ⟩], Q ∈ S(d).

Then, for any matrix K ∈ Rm×d, Kξ is also an m-dimensional G-normally
distributed random vector. Its corresponding generating function is

GKξ(Q) =
1

2
Ê[⟨KTQKξ, ξ⟩], Q ∈ S(m).
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Nolinear expectation theory

G-Brownian motion

Definition 8
A d-dimensional process (Bt)t≥0 with Bt ∈Hd for each t ≥ 0 is called a
G-Brownian motion if the following properties are satisfied:

(1) B0 = 0;

(2) For each t, s ≥ 0, Bt+s −Bt ∼ N (0, sΥ);

(3) For each t, s ≥ 0, Bt+s −Bt á (Bt1 , . . . ,Btn), for each n ∈ N and
0 ≤ t1 ≤ ⋯ ≤ tn ≤ t.

(Bt1 , . . . ,Btn) is not G-normally distributed.

G-Brownian motion is not a G-Gaussian process.
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G-Gaussian random field and spatialG-white noise
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G-Gaussian random field and spatialG-white noise

G-Gaussian random field

Let Γ be a parameter set. Denote the family of all sets of finite indices by

JΓ ∶= {γ = (γ1,⋯, γn) ∶ ∀n ∈ N, γ1,⋯, γn ∈ Γ, γi ≠ γj for i ≠ j}.

Definition 9

A d-dimensional random field on (Ω,H, Ê) is a family of random variables
W = (Wγ)γ∈Γ such that Wγ ∈H

d for each γ ∈ Γ.

Definition 10

A d-dimensional random field (Wγ)γ∈Γ on (Ω,H, Ê) is called a G-Gaussian
random field if for each γ = (γ1,⋯, γn) ∈ JΓ, the (d × n)-dimensional
random vector Wγ = (Wγ1 ,⋯,Wγn) is G-normally distributed.

G-Brownian motion⇏ G-Gaussian random field
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G-Gaussian random field and spatialG-white noise

For each γ = (γ1,⋯, γn) ∈ JΓ, we define

GWγ(Q) =
1

2
Ê[⟨QWγ ,Wγ⟩], Q ∈ S(n × d),

Then (GWγ)γ∈JΓ
constitutes a family of monotone sublinear and continuous

functions satisfying the properties of consistency:
(1) Compatibility: For any (γ1,⋯, γn, γn+1) ∈ JΓ and Q ∈ S(n × d),

GWγ1 ,⋯,Wγn ,Wγn+1
(Q̄) = GWγ1 ,⋯,Wγn

(Q), (2.1)

where Q̄ = (
Q 0
0 0

) ∈ S((n + 1) × d);

(2) Symmetry: For any permutation π of {1,⋯, n} and Q ∈ S(n × d),

GWγπ(1) ,⋯,Wγπ(n) (Q) = GWγ1 ,⋯,Wγn
(π−1(Q)), (2.2)

where the mapping π−1 ∶ S(n × d)↦ S(n × d) is defined by

(π−1(Q))
ij
= (qπ−1(i)π−1(j)), i, j = 1,⋯, n × d.
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G-Gaussian random field and spatialG-white noise

Existence of G-Gaussian random fields

Theorem 11

Let (Gγ)γ∈JΓ
be a family of monotonic and sublinear functions satisfying the

compatibility condition (2.1) and symmetry condition (2.2). Then there exists
a d-dimensional G-Gaussian random field (Wγ)γ∈Γ on a sublinear
expectation space (Ω,H, Ê) such that for each γ = (γ1,⋯, γn) ∈ JΓ,
Wγ = (Wγ1 ,⋯,Wγn) is G-normally distributed and

GWγ(Q) =
1

2
Ê[⟨QWγ ,Wγ⟩] = Gγ(Q), for any Q ∈ S(n × d).
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G-Gaussian random field and spatialG-white noise

Existence of G-Gaussian random fields

Theorem 12
If there exists another Gaussian random field (W̄γ)γ∈Γ, with the same index
set Γ, defined on a sublinear expectation space (Ω̄, H̄, Ē) such that for each
γ = (γ1,⋯, γn) ∈ JΓ, W̄γ is G-normally distributed with the same generating
function, namely,

1

2
Ē[⟨QW̄γ , W̄γ⟩] = Gγ(Q) for any Q ∈ S(n × d).

Then we have W d
= W̄ .

Remark
If Γ = R+, W = (Wγ)γ∈Γ becomes a G-Gaussian process which has been
studied in Peng (2011).
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G-Gaussian random field and spatialG-white noise

Spatial G-white noise

Let Γ = B0(Rd) = {A ∈ B(Rd), λA <∞}, where λA denotes the Lebesgue
measure of A ∈ B(Rd).

Definition 13

Let (Ω,H, Ê) be a sublinear expectation space. A 1-dimensional G-Gaussian
random field W = (WA)A∈Γ is called a 1-dimensional G-white noise if

(1) For all A ∈ Γ, Ê[W2
A] = σ

2λA, −Ê[−W2
A] = σ

2λA;

(2) For each A1,A2 ∈ Γ, A1 ∩A2 = ∅, we have

Ê[WA1WA2] = Ê[−WA1WA2] = 0, (2.3)

Ê[(WA1∪A2 −WA1 −WA2)
2] = 0, (2.4)

where 0 ≤ σ2 ≤ σ2 are any given numbers.
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G-Gaussian random field and spatialG-white noise

Existence of G-white noise

Set
G(a) =

1

2
(σ2a+ − σ2a−), a ∈ R. (2.5)

For each γ = (A1,⋯,An), Aj ∈ Γ = B0(Rd), define a sublinear and monotone
function Gγ(⋅) ∶ S(n)↦ R as follows:

GA1,⋯,An(Q) = G
⎛

⎝

n

∑
i,j=1

qijλAi∩Aj
⎞

⎠
, Q = (qij)

n
i,j=1 ∈ S(n). (2.6)

(Gγ)γ∈JΓ
satisfies the compatibility condition (2.1) and symmetry

condition (2.2).
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G-Gaussian random field and spatialG-white noise

Existence of G-white noise

Theorem 14

For each given numbers 0 ≤ σ2 ≤ σ2, let the family of generating functions
(Gγ)γ∈JΓ

be defined as in (2.6). Then there exists a 1-dimensional spatial

G-white noise (Wγ)γ∈Γ on a sublinear expectation space (Ω,H, Ê) such that,
for each γ = (A1,⋯,An) ∈ JΓ, Q = (qij)

n
i,j=1 ∈ S(n),

GWγ(Q) =
1

2
Ê[⟨QWγ ,Wγ⟩] = G(

n

∑
i,j=1

qijλAi∩Aj).

Denote by L2
G(W) the completion ofH under the Banach norm

∥ ⋅ ∥2 = (Ê[∣ ⋅ ∣2])1/2. Then (Ω,L2
G(W), Ê) forms a complete sublinear

expectation space.

21 / 42



G-Gaussian random field and spatialG-white noise

Invariance under rotation and translation

Proposition 15

For each p ∈ Rd and O ∈ O(d) ∶= {O ∈ Rd×d ∶ OT = O−1}, we set

Tp,O(A) = {Ox + p ∶ x ∈ A}, for A ∈ B0(Rd).

Then, for each A1,⋯,An ∈ B0(Rd), we have

(WA1 ,⋯,WAn)
d
= (WTp,O(A1),⋯,WTp,O(An)).

Namely, the finite-dimensional distributions of W are invariant under
rotations and translations.
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G-Gaussian random field and spatialG-white noise

Stochastic calculus w.r.t. G-white noise

For any simple function

f(x) =
n

∑
i=1

ai1Ai(x), ∀n ∈ N, a1,⋯, an ∈ R,A1,⋯,An ∈ Γ,

define the stochastic integral w.r.t. the spatial G-white noise as follows:

∫
Rd
f(x)W(dx) =

n

∑
i=1

ai∫
Rd

1Ai(x)W(dx) =
n

∑
i=1

aiWAi .

Denote L2(Rd) = {f ∶ ∥f∥2
L2 = ∫Rd ∣f(x)∣

2dx <∞.}
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G-Gaussian random field and spatialG-white noise

Stochastic calculus w.r.t. G-white noise

Lemma 16

If f ∶ Rd → R is a simple function, then

Ê [∣∫
Rd
f(x)W(dx)∣

2

] ≤ σ2∥f∥2
L2 .

The stochastic integral can be continuously extended to the whole
domain of L2(Rd).

Theorem 17

{∫Rd f(x)W(dx) ∶ f ∈ L2(Rd)} is a G-Gaussian random field.
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G-Gaussian random field and spatialG-white noise

Example 18
Let {WA,A ∈ B0(R)} be a 1-dimensional G-white noise. Define
Bt =W([0, t]), t ∈ R+, then

Ê[BtBs] = σ2λ[0,t]∩[0,s] = σ2(s ∧ t).

Unlike the classical case, Bt is no longer a G-Brownian motion, although
Bt

d
= N({0} × [σ2t, σ2t]) for each t ≥ 0.
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Space-timeG-white noise

1 Nolinear expectation theory

2 G-Gaussian random field and spatial G-white noise
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Space-timeG-white noise

Space-time G-white noise

Set Γ = {[s, t) ×A ∶ 0 ≤ s ≤ t <∞, A ∈ B0(Rd)}.

Definition 19

A random field {W([s, t) ×A)}([s,t)×A)∈Γ on (Ω,H, Ê) is called a 1-dimensional
space-time G-white noise if it satisfies the following conditions:

(i) For each fixed [s, t), {W([s, t) ×A)}A∈B0(Rd
)

is a 1-dimensional spatial
G-white noise that has the same family of finite-dimensional distributions as
(
√
t − sWA)A∈B0(Rd

)
;

(ii) For any r ≤ s ≤ t, A ∈ B0(Rd),

W([r, s) ×A) +W([s, t) ×A) =W([r, t) ×A);

(iii) For any ti ≤ s ≤ t and Ai ∈ B0(Rd), i = 1,⋯, n,

W([s, t) ×A) á (W([s1, t1) ×A1),⋯,W([sn, tn) ×An)) ,

where (WA)A∈B0(Rd
)

is a 1-dimensional spatial G-white noise.
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Space-timeG-white noise

Remark
It is important to mention that {W([s, t) ×A),0 ≤ s ≤ t <∞,A ∈ B0(Rd)} is
no longer a G-Gaussian random field.
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Space-timeG-white noise

Existence of G-white noise

Set

Ω ={ω ∈ (R)Γ ∶ ω([r, t) ×A) = ω([r, s) ×A) + ω([s, t) ×A),

∀r ≤ s ≤ t, A ∈ B0(Rd)} ,

and for each ω ∈ Ω, define the canonical process (Wγ)γ∈Γ by

W([s, t) ×A)(ω) = ω([s, t) ×A), ∀0 ≤ s ≤ t <∞, A ∈ B0(Rd).

Set FT = σ{W([s, t) ×A),0 ≤ s ≤ t ≤ T,A ∈ B0(Rd)}, F = ⋁
T≥0
FT , and

Lip(FT ) ={ϕ(W([s1, t1) ×A1),⋯,W([sn, tn) ×An)),∀n ∈ N, si ≤ ti ≤ T,

i = 1,⋯, n, A1,⋯,An ∈ B0(Rd), ϕ ∈ CLip(Rn)},

Lip(F) =
∞
⋃
n=1

Lip(Fn).
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Space-timeG-white noise

For X ∈ Lip(F) with the form

X = ϕ(W([0, t1) ×A1),⋯,W([0, t1) ×Am),⋯,W([tn−1, tn) ×A1),⋯,

W([tn−1, tn) ×Am)),

where 0 < t1 < ⋯ < tn <∞, {A1,⋯,Am} ⊂ B0(Rd) are mutually disjoint, and
ϕ ∈ CLip(Rn×m). Define

Ê[X] ∶= Ẽ[ϕ(
√
t1ξ

(1)
1 ,⋯,

√
t1ξ

(m)
1 ,⋯,

√
tn − tn−1ξ

(1)
n ,⋯,

√
tn − tn−1ξ

(m)
n )],

where {ξ1,⋯, ξn}, ξj = (ξ
(1)
j ,⋯, ξ

(m)
j ), 1 ≤ j ≤ n, are i. i. d. G-normally

distributed random vectors on a sublinear expectation space (Ω̃, H̃, Ẽ).

30 / 42



Space-timeG-white noise

The conditional expectation of X under Ft, tj ≤ t < tj+1, is defined by

Ê[X ∣Ft] ∶=Ê[ϕ(W([0, t1) ×A1),⋯,W([0, t1) ×Am),⋯,

W([tn−1, tn) ×A1),⋯,W([tn−1, tn) ×Am))∣Ft]

= ψ(W([0, t1) ×A1),⋯,W([0, t1) ×Am),⋯,

W([tj−1, tj) ×A1),⋯,W([tj−1, tj) ×Am)),

where

ψ(x11,⋯, xjm) = Ẽ[ϕ(x11,⋯, xjm,
√
tj+1 − tjξ

(1)
j+1,⋯,

√
tj+1 − tjξ

(m)
j+1 ,

⋯,
√
tn − tn−1ξ

(1)
n ,⋯,

√
tn − tn−1ξ

(m)
n )].

The canonical process (Wγ)γ∈Γ is a space-time white noise on
(Ω, Lip(F), Ê, (Ê[⋅∣Ft])t≥0).

For each p ≥ 1, denote by LpG(W[0,T ]) (resp., LpG(W)) the completion
of Lip(FT ) (resp., Lip(F)) under the form ∥X∥p ∶= (Ê[∣X ∣p])1/p.
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Space-timeG-white noise

Proposition 20
For any X,Y ∈ LpG(W), η ∈ LpG(W[0,t]), we have

(i) Ê[X ∣Ft] ≥ Ê[Y ∣Ft] for X ≥ Y .

(ii) Ê[η ∣Ft] = η.

(iii) Ê[X + Y ∣Ft] ≤ Ê[X ∣Ft] + Ê[Y ∣Ft].

(iv) Ê[ηX ∣Ft] = η
+Ê[X ∣Ft] + η

−Ê[−X ∣Ft] if η is bounded.

(v) Ê[Ê[X ∣Ft] ∣Fs] = Ê[X ∣Ft∧s] for s ≥ 0.
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Space-timeG-white noise

Stochastic integral w.r.t. space-time G-white noise

Let M2,0([0, T ] ×Rd) be the collection of simple random fields with the
form:

f(s, x;ω) =
n−1

∑
i=0

m

∑
j=1

Xij(ω)1Aj(x)1[ti,ti+1)(s), (3.1)

where Xij ∈ L
2
G(W[0,ti]), i = 0,⋯, n − 1, j = 1,⋯,m,

0 = t0 < ⋯ < tn = T , and {Aj}
m
j=1 ⊂ B0(Rd) is a mutually disjoint

sequence.

Bochner’s integral of f :

∫
Rd
∫

T

0
f(s, x)dsdx ∶=

n−1

∑
i=0

m

∑
j=1

Xij(ti+1 − ti)λAj . (3.2)
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Space-timeG-white noise

Stochastic integral w.r.t. space-time G-white noise

The stochastic integral w.r.t. the space-time G-white noise W can be defined
as follows:

∫
T

0
∫
Rd
f(s, x)W(ds, dx) ∶=

n−1

∑
i=0

m

∑
j=1

XijW([ti, ti+1) ×Aj). (3.3)

M2,0([0, T ] ×Rd)↦ L2
G(W[0,T ])

Lemma 21

For any simple random field f ∈M2,0([0, T ] ×Rd),

Ê [∫
T

0
∫
Rd
f(s, x)W(ds, dx)] = 0, (3.4)

Ê
⎡
⎢
⎢
⎢
⎢
⎣

∣∫
T

0
∫
Rd
f(s, x)W(ds, dx)∣

2⎤
⎥
⎥
⎥
⎥
⎦

≤ σ2Ê [∫
T

0
∫
Rd

∣f(s, x)∣2dsdx] . (3.5)
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Ê
⎡
⎢
⎢
⎢
⎢
⎣

∣∫
T

0
∫
Rd
f(s, x)W(ds, dx)∣

2⎤
⎥
⎥
⎥
⎥
⎦

≤ σ2Ê [∫
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Space-timeG-white noise

Stochastic integral w.r.t. space-time G-white noise

Denote by M2
G([0, T ] ×Rd) the completion of M2,0([0, T ] ×Rd) under

the norm ∥ ⋅ ∥M2 ∶= (Ê[∫
T

0 ∫Rd ∣ ⋅ ∣
2dxds])

1/2
.

The stochastic integral can be continuously extended to
M2

G([0, T ] ×Rd).

Proposition 22

For each f, g ∈M2
G([0, T ] ×Rd), 0 ≤ s ≤ r ≤ t ≤ T , we have

(i) ∫
t
s ∫Rd f(u,x)W(du, dx) =

∫
r
s ∫Rd f(u,x)W(du, dx) + ∫

t
r ∫Rd f(u,x)W(du, dx).

(ii) If α ∈ L1
G(W[0,s]) is bounded,

∫
t
s ∫Rd(αf(r, x) + g(r, x))W(dr, dx)

= α ∫
t
s ∫Rd f(r, x)W(dr, dx) + ∫

t
s ∫Rd g(r, x)W(dr, dx).

(iii) Ê[∫
T
s ∫Rd f(r, x)W(dr, dx)∣Fs] = 0.
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Stochastic heat equations under sublinear expectation

G-stochastic heat equation

Consider the stochastic heat equation driven by the multiplicative space-time
G-white noise:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∂
∂tu(t, x) =

∂2

∂x2u(t, x) + b(u) + a(u)Ẇ(t, x), 0 < t ≤ T,0 ≤ x ≤ L,
∂
∂xu(t,0) =

∂
∂xu(t,L) = 0, 0 < t ≤ T,

u(0, x) = u0(x), 0 ≤ x ≤ L,
(4.1)

where u0 is a bounded function and a(x), b(x) ∈ CLip(R).

Ẇ(t, x) is the generalized mixed derivative of space-time G-white noise
W.
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Stochastic heat equations under sublinear expectation

G-stochastic heat equation

Γ = [0, T ] ×R
Space-time G-white noise W = {W(t, x) ∶ t ∈ [0, T ], x ∈ R}:

W(t, x) ∶=W([0, t) × [0 ∧ x,0 ∨ x]), for t ∈ [0, T ], x ∈ R.

The generalized mixed derivative Ẇ(t, x) is defined by the test function
φ ∈ C∞

c (R2) as follows:

∫
T

0
∫
R
Ẇ(t, x)φ(t, x)dxdt ∶= ∫

T

0
∫
R
W(t, x)

∂2φ(t, x)

∂t∂x
dxdt.

Proposition 23

For each φ ∈ C∞
c (R2), we have

∫
T

0
∫
R
Ẇ(t, x)φ(t, x)dxdt = ∫

T

0
∫
R
φ(t, x)W(dt, dx). (4.2)
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Stochastic heat equations under sublinear expectation

G-stochastic heat equation

Definition 24
A spatio-temporal random field {u(t, x) ∶ (t, x) ∈ [0, T ]× [0, L]} is said to be
a mild solution of the nonlinear G-stochastic heat equation (4.1) if it satisfies
the following conditions:

(i) (u(t, x))0<t≤T,0≤x≤L ∈ S2
G([0, T ] × [0, L]);

(ii) For 0 < t ≤ T , 0 ≤ x ≤ L, in L2
G(Ft),

u(t, x) = ∫
L

0
u0(y)g(t, x, y)dy + ∫

t

0
∫

L

0
g(t − s, x, y)b(u(s, y))dyds

+ ∫
t

0
∫

L

0
g(t − s, x, y)a(u(s, y))W(ds, dy).

Here g(t, x, y) denotes the Green’s function for the linear heat equation.
S2
G([0, T ] × [0, L]) is the completion of M2,0([0, T ] × [0, L]) under the

norm ∥u∥S2 = sup0≤t≤T sup0≤x≤L(Ê[∣u(t, x)∣2])
1
2 .
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Stochastic heat equations under sublinear expectation

G-stochastic heat equation

Theorem 25
Let u0(x) be bounded and a(x), b(x) be Lipschitz functions. Then nonlinear
stochastic heat equation (4.1) driven by the multiplicative space-time G-white
noise has a unique mild solution {u(t, x) ∶ (t, x) ∈ [0, T ] × [0, L]}.

Remark
The mild solution is also a weak solution of the G-stochastic heat equation.
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Stochastic heat equations under sublinear expectation

Thank you
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