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Université de Lille

30 years of LMM

Le Mans — May 21, 2024

A. Amiri & S. Dachian On smooth change-point estimation and Skorokhod topologies Le Mans, May 21



1 The statement of the problem

2 Estimators and method of study

3 Regular model

4 Change-point model

5 Smooth change-point model

6 Skorokhod topologies and Ibragimov-Khasminskii method

7 Some tools for studying the convergence in the topology M1

A. Amiri & S. Dachian On smooth change-point estimation and Skorokhod topologies Le Mans, May 21



1 The statement of the problem

2 Estimators and method of study

3 Regular model

4 Change-point model

5 Smooth change-point model

6 Skorokhod topologies and Ibragimov-Khasminskii method

7 Some tools for studying the convergence in the topology M1

A. Amiri & S. Dachian On smooth change-point estimation and Skorokhod topologies Le Mans, May 21



The statement of the problem Poisson process

Recalls: X =
(
X (t), 0 ≤ t ≤ T

)
is an (inhomogeneous) Poisson

process of intensity function λ(·) if X (0) = 0 and the increments
of X on disjoint intervals are independent Poisson random variables:

P
{

X (t) − X (s) = k
}

=

(∫ t

s
λ(t) dt

)k

k! exp
{

−
∫ t

s
λ(t) dt

}
.

The process X =
(
X (t), 0 ≤ t ≤ T

)
is a counting process. The

(random) set
{

t1, t2, · · · , tX(T )
}

of its jump times is a point process.

The stochastic integral with respect to X is∫ T

0
f (t) dX (t) =

X(T )∑
i=1

f (ti).
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The statement of the problem Statistical problem

Observation: X (n) = (X1, . . . , Xn), where Xj =
(
Xj(t), 0 ≤ t ≤ τ

)
,

j = 1, . . . , n, are independent Poisson processes of intensity
function λθ(·) with some unknown parameter θ.

Aim: estimate θ as n → +∞.
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The statement of the problem Intensity functions: change-point, regular, smooth change-point
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The statement of the problem Intensity functions: change-point, regular, smooth change-point

0 τθ

0

a

a + r

λθ(t) = a + r 1[θ,τ ](t), 0 ≤ t ≤ τ.
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The statement of the problem Intensity functions: change-point, regular, smooth change-point

0 τθ θ + δ

0

a

a + r

λθ(t) = a + r
δ

(t − θ) 1[θ,θ+δ)(t) + r 1[θ+δ,τ ](t), 0 ≤ t ≤ τ.
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λ
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The statement of the problem Smooth change-point model

Observation: X (n) = (X1, . . . , Xn), where Xj =
(
Xj(t), 0 ≤ t ≤ τ

)
,

j = 1, . . . , n, are independent Poisson processes of intensity function

λ
(n)
θ (t) = a + r

δn
(t − θ) 1[θ,θ+δn)(t) + r 1[θ+δn,τ ](t), 0 ≤ t ≤ τ,

with δn ↘ 0 and unknown parameter θ ∈ (α, β) ⊂ (0, τ).

Aim: estimate θ as n → +∞.
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Estimators and method of study Likelihood and estimators

The likelihood (with respect to n independent homogeneous Poisson
processes of unit intensity) is

L
(
θ, X (n)) = exp

{ n∑
j=1

∫ τ

0
ln λ

(n)
θ (t) dXj(t) − n

∫ τ

0

(
λ

(n)
θ (t) − 1

)
dt
}

.

The maximum likelihood estimator (MLE) θ̂n is solution of the
equation

θ̂n = argsup
θ∈(α,β)

L
(
θ, X (n)).

The Bayes estimator (BE) θ̃n for quadratic loss and prior density p(·)
(supposed continuous and strictly positive) is

θ̃n =
∫ β

α
θ p(θ) L

(
θ, X (n)) dθ∫ β

α
p(θ) L

(
θ, X (n)

)
dθ

.
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Estimators and method of study Ibragimov-Khasminskii method (1981)

First find a normalization rate φn ↘ 0 such that the normalized
likelihood ratio

Zn(u) =
L
(
θ + u φn, X (n))
L
(
θ, X (n)

) , u ∈ R,

converges weakly (in some functional space) to some non-degenerate
limit likelihood ratio

Z (u), u ∈ R.

Then deduce that:
the MLE and the BEs are consistent;
they converge at rate φn, more precisely, φ−1

n
(
θ̂n − θ

)
⇒ ξ

and φ−1
n
(
θ̃n − θ

)
⇒ ζ with

ξ = argsup
u∈R

Z (u) and ζ =
∫

R u Z (u) du∫
R Z (u) du

;
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n E
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the BEs are asymptotically efficient.
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Estimators and method of study Ibragimov-Khasminskii method (1981)

First find a normalization rate φn ↘ 0 such that the normalized
likelihood ratio

Zn(u) =
L
(
θ + u φn, X (n))
L
(
θ, X (n)

) , u ∈ R,

converges weakly (in some functional space) to some non-degenerate
limit likelihood ratio

Z (u), u ∈ R.

Then deduce that:
the MLE and the BEs are consistent;
they converge at rate φn, more precisely, φ−1

n
(
θ̂n − θ

)
⇒ ξ

and φ−1
n
(
θ̃n − θ

)
⇒ ζ with

ξ = argsup
u∈R

Z (u) and ζ =
∫

R u Z (u) du∫
R Z (u) du

;

in particular, φ−2
n E

∣∣θ̂n − θ
∣∣2 → E ξ2 and φ−2

n E
∣∣θ̃n − θ

∣∣2 → E ζ2;
E ζ2 is an asymptotic lower bound on MSEs of all estimators.
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Estimators and method of study Functional spaces

Two functional spaces were used for the convergence of Zn(·) to Z (·)
in the Ibragimov-Khasminskii method:

When the trajectories of these processes are continuous, the
weak convergence takes place in the space C0(R) of continuous
functions on R vanishing at ˘∞ equipped with the sup norm.
When the trajectories of these processes are discontinuous, the
weak convergence takes place in the space D0(R) of càdlàg
functions on R vanishing at ˘∞ equipped with the “usual”
Skorokhod topology.
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0 τθ θ + δ

0

a

a + r

λθ(t) = a + r
δ

(t − θ) 1[θ,θ+δ)(t) + r 1[θ+δ,τ ](t), 0 ≤ t ≤ τ.
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Regular model Properties of the estimators

General regular models for Poisson processes were studied by
Kutoyants (1984, 1998). For our model, the Fisher information is

In(θ) = n
∫ T

0

(
λ̇θ(t)

)2

λθ(t) dt = n r
δ

ln
(a + r

a

)
= n I ,

and the properties of the MLE and of the BEs are given by:

Theorem
The MLE and the BEs are consistent.

They are asymptotically normal
(

with classic rate 1√
n

)
:

√
n
(
θ̂n − θ

)
⇒ N

(
0,

1
I

)
and

√
n
(
θ̃n − θ

)
⇒ N

(
0,

1
I

)
.

The convergence of moments in these convergences in law holds.
Both the MLE and the BEs are asymptotically efficient.
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Regular model Weak convergence behind

Choosing φn = 1√
n

and denoting

ZI(u) = exp
{

u ∆ − u2

2 I
}

, u ∈ R,

where ∆ ü N (0, I), we have the weak convergence in the space
C0(R) of the normalized likelihood ratio Zn(·) to the limit likelihood
ratio ZI(·) (LAN property).

Further, we have

ξ = argsup
u∈R

ZI(u) = ∆
I and ζ =

∫
R u Z (u) du∫
R Z (u) du

= ∆
I ,

and so ξ = ζ ü N
(

0,
1
I

)
.
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0 τθ

0

a

a + r

λθ(t) = a + r 1[θ,τ ](t), 0 ≤ t ≤ τ.

A. Amiri & S. Dachian On smooth change-point estimation and Skorokhod topologies Le Mans, May 21



Change-point model Some notations

Change-point models for Poisson processes were studied by
Kutoyants (1984, 1998).

We introduce

ξa,a+r = argsup
u∈R

Za,a+r(u),

ζa,a+r =
∫

R u Za,a+r(u) du∫
R Za,a+r(u) du

.
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Change-point model Some notations

Change-point models for Poisson processes were studied by
Kutoyants (1984, 1998).

We introduce

Za,a+r(u) =


exp

{
ln
( a

a+r
)
Ya+r(u) + r u

}
, if u ≥ 0,

exp
{

ln
(a+r

a
)
Ya(−u) + r u

}
, if u ≤ 0,

where Ya and Ya+r are independent homogeneous Poisson processes
of intensities a and a + r , respectively,

ξa,a+r = argsup
u∈R

Za,a+r(u),

ζa,a+r =
∫

R u Za,a+r(u) du∫
R Za,a+r(u) du
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Change-point model Properties of the estimators and the weak convergence behind

The properties of the MLE and of the BEs are given by:

Theorem
The MLE and the BEs are consistent.

They converge at rate 1
n :

n
(
θ̂n − θ

)
⇒ ξa,a+r and n

(
θ̃n − θ

)
⇒ ζa,a+r .

The convergence of moments in these convergences in law holds.
The BEs are asymptotically efficient.

Choosing φn = 1
n , we have the weak convergence in the space

D0(R) of the normalized likelihood ratio Zn(·) to the limit likelihood
ratio Za,a+r(·).
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0 τθ θ + δn

0

a

a + r

λ
(n)
θ (t) = a + r

δn
(t − θ) 1[θ,θ+δn)(t) + r 1[θ+δn,τ ](t), 0 ≤ t ≤ τ.
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Smooth change-point model Some heuristics

Naive calculation of the Fisher information for our model yields

In(θ) = n
∫ T

0

(
λ̇θ(t)

)2

λθ(t) dt = n
δn

r ln
(a + r

a

)
= n

δn
F .

So, is our model regular with rate
√

δn

n ≪ 1√
n

?

Certainly not for all choices of δn! If, for example, δn ≪ 1
n , we would

have
√

δn

n ≪ 1
n , which should not be possible.

In fact, the behavior of the estimators is essentially different in the
following two cases:

n δn → +∞ (slow case),

n δn → 0 (fast case).
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Smooth change-point model Properties of the estimators in the slow case (nδn → ∞)

Theorem
Suppose n δn → +∞. Then:

The MLE and the BEs are consistent.

They are asymptotically normal with rate
√

δn

n :√
n
δn

(
θ̂n − θ

)
⇒ N

(
0,

1
F

)
and

√
n
δn

(
θ̃n − θ

)
⇒ N

(
0,

1
F

)
.

The convergence of moments in these convergences in law holds.
Both the MLE and the BEs are asymptotically efficient.
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Smooth change-point model Weak convergence behind

The model is still regular (LAN): choosing φn =
√

δn

n and denoting,
as before,

ZF (u) = exp
{

u ∆ − u2

2 F
}

, u ∈ R,

where ∆ ü N (0, F ), we have the weak convergence in the space
C0(R) of the normalized likelihood ratio Zn(·) to the limit likelihood
ratio ZF (·).
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Smooth change-point model Properties of the estimators in the fast case (nδn → 0)

Recall:

Za,a+r(u) =


exp

{
ln
( a

a+r
)
Ya+r(u) + r u

}
, if u ≥ 0,

exp
{

ln
(a+r

a
)
Ya(−u) + r u

}
, if u ≤ 0,

ξa,a+r = argsup
u∈R

Za,a+r(u),

ζa,a+r =
∫

R u Za,a+r(u) du∫
R Za,a+r(u) du

.

A. Amiri & S. Dachian On smooth change-point estimation and Skorokhod topologies Le Mans, May 21 15/26



Smooth change-point model Properties of the estimators in the fast case (nδn → 0)

Recall:

Za,a+r(u) =


exp

{
ln
( a

a+r
)
Ya+r(u) + r u

}
, if u ≥ 0,

exp
{

ln
(a+r

a
)
Ya(−u) + r u

}
, if u ≤ 0,

ξa,a+r = argsup
u∈R

Za,a+r(u),

ζa,a+r =
∫

R u Za,a+r(u) du∫
R Za,a+r(u) du

.

A. Amiri & S. Dachian On smooth change-point estimation and Skorokhod topologies Le Mans, May 21 15/26



Smooth change-point model Properties of the estimators in the fast case (nδn → 0)

Theorem
Suppose n δn → 0.

Then:

The MLE and the BEs are consistent.

They converge at rate 1
n :

n
(
θ̂n − θ

)
⇒ ξa,a+r and n

(
θ̃n − θ

)
⇒ ζa,a+r .

The convergence of moments in these convergences in law holds.
The BEs are asymptotically efficient.
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Smooth change-point model The ingredients of the proof

We choose φn = 1
n and show that:

The finite dimensional distributions of the normalized
likelihood ratio Zn(·) converge to those of Za,a+r(·).

E
∣∣Z 1/2

n (u) − Z 1/2
n (v)

∣∣2 ≤ C |u − v |.

E Z 1/2
n (u) ≤ exp

{
−c min{|u|, u2}

}
.

This is sufficient for the properties of the BEs.

As to the MLE, in order to establish its properties we need the weak
convergence of Zn(·) to Za,a+r(·) in some functional space.

However, the trajectories of Zn(·) are continuous, while those of
Za,a+r(·) are discontinuous, and so Zn(·) cannot converge to Za,a+r(·)
in the space D0(R) equipped with the “usual” Skorokhod topology.
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Skorokhod topologies and Ibragimov-Khasminskii method Skorokhod topologies J1 and M1

Four topologies introduced by Skorokhod (1956):

U ⇒ J1 ⇒⇒ M1

J2

⇒
⇒

M2.

The “usual” Skorokhod topology J1: on D0(R) it is defined by the
distance

d (J1)(f , g) = inf
ν

[
sup
u∈R

∣∣f (u) − g
(
ν(u)

)∣∣+ sup
u∈R

∣∣u − ν(u)
∣∣],

with inf taken over all continuous one-to-one mappings ν : R → R.

The topology M1: on D0(R) it is defined by the distance
d (M1)(f , g) = inf sup

s∈R
d
((

t1(s), y1(s)
)
;
(
t2(s), y2(s)

))
,

with inf taken over all parametric representations
(
t1(·), y1(·)

)
and(

t2(·), y2(·)
)

of the graphs Γf and Γg of f and g .
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Skorokhod topologies and Ibragimov-Khasminskii method Moduli of continuity

Modulus of continuity of the topology J1:

∆(J1)
h (f ) = sup min

{
|f (u) − f (u′)|, |f (u) − f (u′′)|

}
+ sup

|u|>1/h
|f (u)|

with sup taken over u, u′, u′′ ∈ R : u − h ≤ u′ ≤ u ≤ u′′ ≤ u + h.

Modulus of continuity of the topology M1:

∆(M1)
h (f ) = sup d

(
f (u); [f (u′), f (u′′)]

)
+ sup

|u|>1/h
|f (u)|.

with the same sup.

Modulus of continuity restricted to an interval [A, B] ⊂ R:

∆(M1)
h (f ; [A, B]) = sup

u∈[A,B]
sup

u−h≤u′≤u≤u′′≤u+h
d
(
f (u); [f (u′), f (u′′)]

)
.
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Skorokhod topologies and Ibragimov-Khasminskii method Tightness criterion

Let the processes Yn(·) and Y (·) with trajectories in D0(R). Then
Yn(·) converges weakly to Y (·) in the topology M1 if and only if:

the finite dimensional distributions of Yn(·) converge to those of
Y (·) on a dense subset of R;
lim
h→0

lim
n→+∞

P
(
∆(M1)

h (Yn) > ε
)

= 0 for all ε > 0 (tightness).
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Y (·) on a dense subset of R;
lim
h→0

lim
n→+∞

P
(
∆(M1)

h (Yn) > ε
)

= 0 for all ε > 0

(tightness).
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Skorokhod topologies and Ibragimov-Khasminskii method Extension of Ibragimov-Khasminskii method

Suppose that:

the finite dimensional distributions of the normalized
likelihood ratio Zn(·) converge to those of some Z (·) having a
unique argsup;
E
∣∣Z 1/2

n (u) − Z 1/2
n (v)

∣∣2 ≤ C |u − v |;

E Z 1/2
n (u) ≤ exp

{
−g(|u|)

}
with g(ℓ) ≥ κℓ (∀ ℓ ∈ N);

as well as

P
(

∆(M1)
h

(
Z 1/2

n ; [ℓ, ℓ + 1]
)

> hγ1
)

≤ B(ℓ) hγ2 (∀ 0 < h < h0),
with B(·) of at most polynomial growth.

Then Zn(·) converges weakly to Z (·) in the topology M1, and the
properties of the MLE follow.
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Skorokhod topologies and Ibragimov-Khasminskii method Application to the fast case of our model

For our model, in the fast case, we show that:
∃ γ, h0, C > 0 such that ∀ 0 < h < h0 it holds

P
(

∆(M1)
h

(
Z 1/2

n ; [ℓ, ℓ + 1]
)

> hγ
)

≤ C h2γ.

This yields the weak convergence of Zn(·) to Za,a+r(·) in the
topology M1 and the properties of the MLE.
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Some tools for studying the convergence in the topology M1 Moduli of increase and decrease

Let f be a càdlàg function on [a, b].

Recall:

∆(M1)
h (f ) = sup

u,u′,u′′∈[a,b] : u−h≤u′≤u≤u′′≤u+h
d
(
f (u); [f (u′), f (u′′)]

)
,

∆(U)
h (f ) = sup

u,v∈[a,b] : u≤v≤u+h

∣∣f (v) − f (u)
∣∣.

Introduce:

modulus of increase ∆+
h (f ) = sup

u,v∈[a,b] : u≤v≤u+h

(
f (v) − f (u)

)
+ ,

modulus of decrease ∆−
h (f ) = sup

u,v∈[a,b] : u≤v≤u+h

(
f (v) − f (u)

)
− .

Remark that ∆(U)
h (f ) = max

{
∆+

h (f ), ∆−
h (f )

}
.
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Some tools for studying the convergence in the topology M1 Moduli of increase and decrease

Remark that ∆(U)
h (f ) = max

{
∆+

h (f ), ∆−
h (f )

}
.

Proposition: ∆(M1)
h (f ) ≤ min

{
∆+

h (f ), ∆−
h (f )

}
.

Corollary: If f is a monotonic, then ∆(M1)
h (f ) = 0!

Proposition: If the jumps of f have the same sign and are
summable, then

∆(M1)
h (f ) ≤ ∆(U)

h (fc.),

where fc. is the continuous part of f .
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Some tools for studying the convergence in the topology M1 Lipschitz increasing and decreasing functions

Recall: f is L-Lipschitz if ∀u, v ∈ [a, b]∣∣f (v) − f (u)
∣∣ ≤ L(v − u).

f is L-Lipschitz increasing if ∀u, v ∈ [a, b] such that u ≤ v ,(
f (v) − f (u)

)
+ ≤ L(v − u),

f is L-Lipschitz decreasing if ∀u, v ∈ [a, b] such that u ≤ v ,(
f (v) − f (u)

)
− ≤ L(v − u).

Proposition:

f is L-Lipschitz increasing ⇐⇒ ∆+
h (f ) ≤ Lh,

f is L-Lipschitz decreasing ⇐⇒ ∆−
h (f ) ≤ Lh.
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Some tools for studying the convergence in the topology M1 Lipschitz increasing and decreasing functions

Proposition: Let f be continuous and piecewise differentiable.
Then:

f is L-Lipschitz increasing ⇐⇒ f ′(t) ≤ L,

f is L-Lipschitz decreasing ⇐⇒ f ′(t) ≥ −L.

Generalizes to càdlàg piecewise differentiable functions with the
convention that the derivative is infinite at jump points:

f ′(t) =
{

+ ∞, if f (t) − f (t−) > 0,

− ∞, if f (t) − f (t−) < 0.
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Thank you for your attention!

A. Amiri & S. Dachian On smooth change-point estimation and Skorokhod topologies Le Mans, May 21
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