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Contribution in a nutshell

Stochastic processes

⇓

Integral equations

⇓

Asymptotic analysis

This talk: a brief survey of a few such problems with fBm
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Fractional Brownian motion

Definition

The fBm BH = (BH
t ; t ≥ 0) is the centered Gaussian process with

cov(BH
t ,BH

s ) =
1
2

(
t2H + s2H − |t − s|2H)

where H ∈ (0, 1) is the Hurst parameter.

• H-self similar Gaussian process with stationary increments

BH
t − BH

s ∼ N(0, |t − s|2H)

• H-Hölder paths
• neither a semimartingale, nor a Markov process for H ̸= 1

2
• long range dependence for H > 1

2
∞∑

n=1

Cov
(
∆BH

1 ,∆BH
n
)
= ∞
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The eigenvalue problem



The eigenvalue problem

• A random process X = (Xt, t ∈ [0,T]) with EXt ≡ 0 and
covariance kernel

K(s, t) = EXsXt.

• Covariance operator

(Kf )(t) :=
∫ T

0
K(s, t)f (s)ds.

• Find all pairs (λ, φ) with λ ∈ R which solve the equation

Kφ = λφ.
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The eigenvalue problem

General theory

Countably many solutions (λn, φn) if e.g. K ∈ L2([0,T]2)

• the eigenvalues λn are nonnegative and λn ↘ 0

• the eigenfunctions φn form orthogonal basis in L2([0,T])

Applications:

• Karhunen-Loeve approximation

• Statistical inference (nonparametric tests, etc.)

• Filtering and detection problems

• Small L2-ball probabilities

• Sampling from heavy tailed distributions

• etc.
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The eigenvalue problem

Example (Brownian motion)
For K(s, t) = min(s, t) with s, t ∈ [0, 1]

λn = ν−2
n , φn(t) =

√
2 sin(νnt), n = 1, 2, ...

where νn = (n − 1
2)π.

Some other processes with exact solutions:

• Brownian bridge
• Demeaned Bm
• OU process
• integrated Bm and bridge
• etc.

The approach: reduction to BVP for ODEs
6



Eigenvalue problem for the fBm

Find all solutions (λ, φ) to the integral equation∫ 1

0
K(s, t)φ(s)ds = λφ(t), t ∈ [0, 1]

for K(s, t) = 1
2

(
s2H + t2H − |t − s|2H

)
with H ∈ (0, 1).

Theorem (Bronski 03)

λn =
sin(πH)Γ(2H + 1)

(nπ)2H+1 + o
(

n−
(2H+2)(4H+3)

4H+5 +δ

)
as n → ∞.

Other proofs: Nazarov and Nikitin 04, Luschgy and Pagès 04.
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Eigenvalue problem for the fBm

Theorem (Chigansky and Kleptsyna, 2018)

1. The eigenvalues satisfy

λn = sin(πH)Γ(2H + 1)ν−2H−1
n , n = 1, 2, ...

where the sequence νn has the asymptotics

νn =
(
n − 1

2

)
π −

(H − 1
2)

2

H + 1
2

π

2
+ O(n−1), n → ∞.

• Exact second order asymptotics.
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Eigenvalue problem for the fBm

Theorem (continued)
2. The eigenfunctions satisfy

φn(t) =
√

2 sin
(
νnt + ηH

)
+∫ ∞

0

(
f0(u)e−tνnu + f1(u)e−(1−t)νnu

)
du + n−1rn(t), t ∈ [0, 1]

where f0 and f1 are explicit (cumbersome) and

ηH =
1
4
(H − 1

2)(H − 3
2)

H + 1
2

and sup
t∈[0,1]

∣∣rn(t)
∣∣ ≤ C(H).

• uniform approximation: oscillatory term + boundary layer
terms + residual
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Eigenvalue problem for the fBm

Other “fractional” processes:

• fractional “noise” (formal derivative of fBm)

• fractional Brownian bridge

• fractional OU process

• integrated fBm

• mixed fBm

• Riemann-Liouville process
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An application: small L2-ball
probabilities problem



An application: small ball probabilities

Small ball probabilities problem:
For a given process X = (Xt, t ∈ [0, 1]) and a norm ∥ · ∥ find the
asymptotics of P(∥X∥ ≤ ε) as ε → 0.

• The most studied is the Gaussian case with L2-norm:

P(∥X∥2 ≤ ε) = P
( ∞∑

n=1

λnZ2
n ≤ ε2

)
with Zn

i.i.d∼ N(0, 1)

Example (Bm, Cameron-Martin 44)

P(∥B∥2 ≤ ε) =
4√
π
ε exp

(
− 1

8
ε−2)(1 + o(1)), ε → 0.

• Some milestones: Sytaja 75 (Laplace transform), Li 92
(comparison theorem), Dunker, Lifshits and Linde 98
(checkable conditions), ...
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An application: small ball probabilities

Nikitin and Nazarov 2004:

• The asymptotics of − logP(∥X∥2 ≤ ε) is determined by the
first order asymptotics of λn

Corollary (Bronski 03)
For any H ∈ (0, 1),

− logP(∥BH∥2 ≤ ε) = β(H)ε−1/H(1 + o(ε)), ε → 0,

where

β(H) = H

(
sin(πH)Γ(2H + 1)

)1/(2H)(
(2H + 1) sin π

2H+1

)1+1/(2H)
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An application: small ball probabilities

Nikitin and Nazarov 2004:

• The asymptotics of P(∥X∥2 ≤ ε) is determined by the second
order asymptotics of λn, up to a mult. “distortion” constant.

Corollary (Chigansky and Kleptsyna 2018)
For all H ∈ (0, 1),

P(∥BH∥2 ≤ ε) = Cd(H)εγ(H) exp
(
−β(H)ε−1/H

)
(1 + o(1)), ε → 0

where Cd(H) is (yet unknown) distortion constant and

γ(H) =
1

2H

(
3/4 + H2 +

1
2

1 − 2H
(1 + 2H)2

)
.
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Fredholm integral equations



Fredholm integral equations

First kind: ∫ T

0
K(s, t)g(s)ds = f (t), t ∈ [0,T]

Second kind:

εg(t) +
∫ T

0
K(s, t)g(s)ds = f (t), t ∈ [0,T]

• ε ∈ R+ and T ∈ R+ are parameters

• f (t) is a given “forcing” function

• K(s, t) is a kernel (e.g. covariance function)
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Fredholm integral equations

General theory
Existence and uniqueness of solutions in appropriate spaces
depending on K and f . The solutions are rarely explicit.

A frequent objective is to find the asymptotics of a specific
functional of the solution w.r.t. a relevant parameter:

• Large time T → ∞ (finite section limits)

• Small parameter ε → 0 (singular perturbation)
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An application: filtering problem



An application: filtering problem

• State process X = (Xt; t ∈ [0,T])

• Observation process (additive Gaussian noise)

Yt = µ

∫ t

0
Xtdt +

√
εVt, t ∈ [0,T]

where V is a process independent of X, µ and ε are constants

• The optimal estimator of Xt and its MSE

X̂t = E(Xt|FY
t ) and Pt = E(Xt − X̂t)

2.
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An application: filtering problem

• The optimal filter is

X̂T =
1√
ε

∫ T

0
g(s)dYs

• The weight function g(s) solves integro-differential equation

∂

∂s

∫ T

0
g(r)

∂

∂r
KV(r, s)dr +

µ2

ε

∫ T

0
KX(r, s)g(r)dr =

µ√
ε

KX(s,T), s ∈ [0,T],

with the covariance kernels

KX(s, t) = Cov(Xs,Xt) and KV(s, t) = Cov(Vs,Vt).

• The minimal MSE is given by the functional

PT =

√
ε

µ

(
∂

∂s

∫ T

0
g(r)

∂

∂r
KV(r, s)dr

)∣∣s := T
.
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The Markov case: Kalman & Bucy

• Observation disturbance V is the Brownian motion
=⇒ integral equation of second kind

• Markov state process (OU)

Xt = β

∫ t

0
Xsds + Wt, t ∈ [0,T]

where W is a Brownian motion.
=⇒ reduction of the integral equation to the Riccati ODE

Ṗt = 2βPt + 1 − (µ/
√
ε)2P2

t
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The Markov case: Kalman & Bucy

Elementary analysis of the Riccati ODE

Ṗt = 2βPt + 1 − (µ/
√
ε)2P2

t

reveals that

• the steady state error exists and is given by

PT

(
β,

µ√
ε

)
−−−→
T→∞

β +
√
β2 + µ2/ε

µ2/ε

• the small noise asymptotics is

PT

(
β,

µ√
ε

)
=

√
ε

µ

(
1 + o(1)

)
as ε → 0, ∀T > 0.

[Q]: Kalman-Bucy model with fBm’s WH1 and VH2 ...?
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Kalman-Bucy model with fractional noises

Theorem (Afterman, Ch., Kleptsyna, Marushkevych 22)

For the Kalman-Bucy model with fBm’s WH1 and VH2 , the
steady state error exists:

P∞

(
β,

µ√
ε

)
= lim

T→∞
PT

(
β,

µ√
ε

)
,

and, for any T > 0,

lim
ε→0

ε−νPT

(
β,

µ√
ε

)
= P∞

(
0, µ

)
with ν =

H1

1 + H1 − H2
.

• Asymptotic error increases with roughness of the noises
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Kalman-Bucy model with fractional noises

A more detailed answer in some meaningful special cases such as

Theorem (fractional state + white observation noises)

Let H := H1 ∈ (0, 1) and H2 = 1
2 , then

P∞

(
β,

µ√
ε

)
=

ε

µ2

(
1
π

∫ ∞

0
θ(t;H, 1

2)dt + β + 2Re(z0)1{H>
1
2}

)
Consequently, for any T > 0,

PT

(
β,

µ√
ε

)
≍

(
Γ(2H + 1) sin(πH)

) 1
2H+1

sin π
2H+1

(ε/µ2)
2H

2H+1 , as ε → 0.

• Reduces to the classical spectral formula in the stable case
β < 0, but is valid also in the unstable case β ≥ 0!
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Application: statistical inference



Estimation of the Hurst parameter from noisy data

Problem

Estimate parameters H ∈ (3
4 , 1) and σ ∈ R+ given the sample

Xt = σBH
t +

√
εBt, t ∈ [0,T]

where fBm BH and Bm B are independent and ε > 0 is known.

Theorem (Shepp 66, Cheridito 01)

The measures induced by X and
√
εB are equivalent iff H > 3

4 .
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Estimation of the Hurst parameter from noisy data

Theorem (Chigansky and Kleptsyna, 2023)

The parameters H ∈ (3
4 , 1) and σ ∈ (0,∞) can be estimated at

the optimal local minimax rates

ε1/(4H−2) and ε1/(4H−2) log ε−1.

respectively, as ε → 0.

Proof: verification of the "singular" LAN property (as in Brouste
and Fukasawa, 18) which hinges on asymptotic analysis of the
equation

εg(t) +
∫ T

0
K(t − s)g(s)ds = K(t), 0 < s < t < T

with the weakly singular kernel (of fractional "noise")

K(t) = σH(2H − 1)|t|2H−2. 23



Bon anniversaire, LMM!
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