Asymptotic analysis in some problems with fractional Brownian motion

P. Chigansky ${ }^{1}$ M. Kleptsyna ${ }^{2}$

30 ans du LMM, May 20-24, 2024
${ }^{1}$ The Hebrew University of Jerusalem, Israel
${ }^{2}$ Le Mans Université, France

Contribution in a nutshell

Stochastic processes

\Downarrow
Integral equations
\Downarrow
Asymptotic analysis

This talk: a brief survey of a few such problems with fBm

Fractional Brownian motion

Definition

The $\mathrm{fBm} B^{H}=\left(B_{t}^{H} ; t \geq 0\right)$ is the centered Gaussian process with

$$
\operatorname{cov}\left(B_{t}^{H}, B_{s}^{H}\right)=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right)
$$

where $H \in(0,1)$ is the Hurst parameter.

- H-self similar Gaussian process with stationary increments

$$
B_{t}^{H}-B_{s}^{H} \sim N\left(0,|t-s|^{2 H}\right)
$$

- H-Hölder paths
- neither a semimartingale, nor a Markov process for $H \neq \frac{1}{2}$
- long range dependence for $H>\frac{1}{2}$

$$
\sum_{n=1}^{\infty} \operatorname{Cov}\left(\Delta B_{1}^{H}, \Delta B_{n}^{H}\right)=\infty
$$

The eigenvalue problem

The eigenvalue problem

- A random process $X=\left(X_{t}, t \in[0, T]\right)$ with $\mathrm{E} X_{t} \equiv 0$ and covariance kernel

$$
K(s, t)=\mathrm{E} X_{s} X_{t} .
$$

- Covariance operator

$$
(K f)(t):=\int_{0}^{T} K(s, t) f(s) d s
$$

- Find all pairs (λ, φ) with $\lambda \in \mathbb{R}$ which solve the equation

$$
K \varphi=\lambda \varphi
$$

The eigenvalue problem

General theory

Countably many solutions $\left(\lambda_{n}, \varphi_{n}\right)$ if e.g. $K \in L^{2}\left([0, T]^{2}\right)$

- the eigenvalues λ_{n} are nonnegative and $\lambda_{n} \searrow 0$
- the eigenfunctions φ_{n} form orthogonal basis in $L^{2}([0, T])$

Applications:

- Karhunen-Loeve approximation
- Statistical inference (nonparametric tests, etc.)
- Filtering and detection problems
- Small L^{2}-ball probabilities
- Sampling from heavy tailed distributions
- etc.

The eigenvalue problem

Example (Brownian motion)

For $K(s, t)=\min (s, t)$ with $s, t \in[0,1]$

$$
\lambda_{n}=\nu_{n}^{-2}, \quad \varphi_{n}(t)=\sqrt{2} \sin \left(\nu_{n} t\right), \quad n=1,2, \ldots
$$

where $\nu_{n}=\left(n-\frac{1}{2}\right) \pi$.

Some other processes with exact solutions:

- Brownian bridge
- Demeaned Bm
- OU process
- integrated Bm and bridge
- etc.

The approach: reduction to BVP for ODEs

Eigenvalue problem for the fBm

Find all solutions (λ, φ) to the integral equation

$$
\int_{0}^{1} K(s, t) \varphi(s) d s=\lambda \varphi(t), \quad t \in[0,1]
$$

for $K(s, t)=\frac{1}{2}\left(s^{2 H}+t^{2 H}-|t-s|^{2 H}\right)$ with $H \in(0,1)$.

Theorem (Bronski 03)

$$
\lambda_{n}=\frac{\sin (\pi H) \Gamma(2 H+1)}{(n \pi)^{2 H+1}}+o\left(n^{-\frac{(2 H+2)(4 H+3)}{4 H+5}+\delta}\right) \quad \text { as } n \rightarrow \infty .
$$

Other proofs: Nazarov and Nikitin 04, Luschgy and Pagès 04.

Eigenvalue problem for the fBm

Theorem (Chigansky and Kleptsyna, 2018)

1. The eigenvalues satisfy

$$
\lambda_{n}=\sin (\pi H) \Gamma(2 H+1) \nu_{n}^{-2 H-1}, \quad n=1,2, \ldots
$$

where the sequence ν_{n} has the asymptotics

$$
\nu_{n}=\left(n-\frac{1}{2}\right) \pi-\frac{\left(H-\frac{1}{2}\right)^{2}}{H+\frac{1}{2}} \frac{\pi}{2}+O\left(n^{-1}\right), \quad n \rightarrow \infty
$$

- Exact second order asymptotics.

Eigenvalue problem for the fBi

Theorem (continued)

2. The eigenfunction satisfy

$$
\begin{aligned}
& \varphi_{n}(t)=\sqrt{2} \sin \left(\nu_{n} t+\eta_{H}\right)+ \\
& \int_{0}^{\infty}\left(f_{0}(u) e^{-t \nu_{n} u}+f_{1}(u) e^{-(1-t) \nu_{n} u}\right) d u+n^{-1} r_{n}(t), \quad t \in[0,1]
\end{aligned}
$$

where f_{0} and f_{1} are explicit (cumbersome) and

$$
\eta_{H}=\frac{1}{4} \frac{\left(H-\frac{1}{2}\right)\left(H-\frac{3}{2}\right)}{H+\frac{1}{2}} \quad \text { and } \sup _{t \in[0,1]}\left|r_{n}(t)\right| \leq C(H) \text {. }
$$

- uniform approximation: oscillatory term + boundary layer terms + residual

Eigenvalue problem for the fBm

Other "fractional" processes:

- fractional "noise" (formal derivative of fBm)
- fractional Brownian bridge
- fractional OU process
- integrated fBm
- mixed fBm
- Riemann-Liouville process

An application: small L^{2}-ball probabilities problem

An application: small ball probabilities

Small ball probabilities problem:

For a given process $X=\left(X_{t}, t \in[0,1]\right)$ and a norm $\|\cdot\|$ find the asymptotics of $\mathrm{P}(\|X\| \leq \varepsilon)$ as $\varepsilon \rightarrow 0$.

- The most studied is the Gaussian case with L^{2}-norm:

$$
\mathrm{P}\left(\|X\|_{2} \leq \varepsilon\right)=\mathrm{P}\left(\sum_{n=1}^{\infty} \lambda_{n} Z_{n}^{2} \leq \varepsilon^{2}\right) \text { with } Z_{n} \stackrel{\text { i.i.d }}{\sim} N(0,1)
$$

Example (Bm, Cameron-Martin 44)

$$
\mathrm{P}\left(\|B\|_{2} \leq \varepsilon\right)=\frac{4}{\sqrt{\pi}} \varepsilon \exp \left(-\frac{1}{8} \varepsilon^{-2}\right)(1+o(1)), \quad \varepsilon \rightarrow 0
$$

- Some milestones: Sytaja 75 (Laplace transform), Li 92 (comparison theorem), Dunker, Lifshits and Linde 98 (checkable conditions), ...

An application: small ball probabilities

Nikitin and Nazarov 2004:

- The asymptotics of $-\log \mathrm{P}\left(\|X\|_{2} \leq \varepsilon\right)$ is determined by the first order asymptotics of λ_{n}

Corollary (Bronski 03)

For any $H \in(0,1)$,

$$
-\log \mathrm{P}\left(\left\|B^{H}\right\|_{2} \leq \varepsilon\right)=\beta(H) \varepsilon^{-1 / H}(1+o(\varepsilon)), \quad \varepsilon \rightarrow 0
$$

where

$$
\beta(H)=H \frac{(\sin (\pi H) \Gamma(2 H+1))^{1 /(2 H)}}{\left((2 H+1) \sin \frac{\pi}{2 H+1}\right)^{1+1 /(2 H)}}
$$

An application: small ball probabilities

Nikitin and Nazarov 2004:

- The asymptotics of $\mathrm{P}\left(\|X\|_{2} \leq \varepsilon\right)$ is determined by the second order asymptotics of λ_{n}, up to a mult. "distortion" constant.

Corollary (Chigansky and Kleptsyna 2018)

For all $H \in(0,1)$,
$\mathrm{P}\left(\left\|B^{H}\right\|_{2} \leq \varepsilon\right)=C_{d}(H) \varepsilon^{\gamma(H)} \exp \left(-\beta(H) \varepsilon^{-1 / H}\right)(1+o(1)), \varepsilon \rightarrow 0$
where $C_{d}(H)$ is (yet unknown) distortion constant and

$$
\gamma(H)=\frac{1}{2 H}\left(3 / 4+H^{2}+\frac{1}{2} \frac{1-2 H}{(1+2 H)^{2}}\right)
$$

Fredholm integral equations

Fredholm integral equations

First kind:

$$
\int_{0}^{T} K(s, t) g(s) d s=f(t), \quad t \in[0, T]
$$

Second kind:

$$
\varepsilon g(t)+\int_{0}^{T} K(s, t) g(s) d s=f(t), \quad t \in[0, T]
$$

- $\varepsilon \in \mathbb{R}_{+}$and $T \in \mathbb{R}_{+}$are parameters
- $f(t)$ is a given "forcing" function
- $K(s, t)$ is a kernel (e.g. covariance function)

Fredholm integral equations

General theory

Existence and uniqueness of solutions in appropriate spaces depending on K and f. The solutions are rarely explicit.

A frequent objective is to find the asymptotics of a specific functional of the solution w.r.t. a relevant parameter:

- Large time $T \rightarrow \infty$ (finite section limits)
- Small parameter $\varepsilon \rightarrow 0$ (singular perturbation)

An application: filtering problem

An application: filtering problem

- State process $X=\left(X_{t} ; t \in[0, T]\right)$
- Observation process (additive Gaussian noise)

$$
Y_{t}=\mu \int_{0}^{t} X_{t} d t+\sqrt{\varepsilon} V_{t}, \quad t \in[0, T]
$$

where V is a process independent of X, μ and ε are constants

- The optimal estimator of X_{t} and its MSE

$$
\widehat{X}_{t}=\mathrm{E}\left(X_{t} \mid \mathcal{F}_{t}^{Y}\right) \quad \text { and } \quad P_{t}=\mathrm{E}\left(X_{t}-\widehat{X}_{t}\right)^{2} .
$$

An application: filtering problem

- The optimal filter is

$$
\widehat{X}_{T}=\frac{1}{\sqrt{\varepsilon}} \int_{0}^{T} g(s) d Y_{s}
$$

- The weight function $g(s)$ solves integro-differential equation

$$
\begin{aligned}
& \frac{\partial}{\partial s} \int_{0}^{T} g(r) \frac{\partial}{\partial r} K_{V}(r, s) d r+ \\
& \quad \frac{\mu^{2}}{\varepsilon} \int_{0}^{T} K_{X}(r, s) g(r) d r=\frac{\mu}{\sqrt{\varepsilon}} K_{X}(s, T), \quad s \in[0, T]
\end{aligned}
$$

with the covariance kernels

$$
K_{X}(s, t)=\operatorname{Cov}\left(X_{s}, X_{t}\right) \quad \text { and } \quad K_{V}(s, t)=\operatorname{Cov}\left(V_{s}, V_{t}\right) .
$$

- The minimal MSE is given by the functional

$$
P_{T}=\frac{\sqrt{\varepsilon}}{\mu}\left(\frac{\partial}{\partial s} \int_{0}^{T} g(r) \frac{\partial}{\partial r} K_{V}(r, s) d r\right)_{\mid s:=T}
$$

The Markov case: Kalman \& Bucy

- Observation disturbance V is the Brownian motion
\Longrightarrow integral equation of second kind
- Markov state process (OU)

$$
X_{t}=\beta \int_{0}^{t} X_{s} d s+W_{t}, \quad t \in[0, T]
$$

where W is a Brownian motion.
\Longrightarrow reduction of the integral equation to the Riccati ODE

$$
\dot{P}_{t}=2 \beta P_{t}+1-(\mu / \sqrt{\varepsilon})^{2} P_{t}^{2}
$$

The Markov case: Kalman \& Bucy

Elementary analysis of the Riccati ODE

$$
\dot{P}_{t}=2 \beta P_{t}+1-(\mu / \sqrt{\varepsilon})^{2} P_{t}^{2}
$$

reveals that

- the steady state error exists and is given by

$$
P_{T}\left(\beta, \frac{\mu}{\sqrt{\varepsilon}}\right) \underset{T \rightarrow \infty}{ } \frac{\beta+\sqrt{\beta^{2}+\mu^{2} / \varepsilon}}{\mu^{2} / \varepsilon}
$$

- the small noise asymptotics is

$$
P_{T}\left(\beta, \frac{\mu}{\sqrt{\varepsilon}}\right)=\frac{\sqrt{\varepsilon}}{\mu}(1+o(1)) \quad \text { as } \varepsilon \rightarrow 0, \quad \forall T>0 .
$$

[Q]: Kalman-Bucy model with fBm's $W^{H_{1}}$ and $V^{H_{2}} \ldots$?

Kalman-Bucy model with fractional noises

Theorem (Afterman, Ch., Kleptsyna, Marushkevych 22)

For the Kalman-Bucy model with $f B m$'s $W^{H_{1}}$ and $V^{H_{2}}$, the steady state error exists:

$$
P_{\infty}\left(\beta, \frac{\mu}{\sqrt{\varepsilon}}\right)=\lim _{T \rightarrow \infty} P_{T}\left(\beta, \frac{\mu}{\sqrt{\varepsilon}}\right),
$$

and, for any $T>0$,

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{-\nu} P_{T}\left(\beta, \frac{\mu}{\sqrt{\varepsilon}}\right)=P_{\infty}(0, \mu) \quad \text { with } \nu=\frac{H_{1}}{1+H_{1}-H_{2}} .
$$

- Asymptotic error increases with roughness of the noises

Kalman-Bucy model with fractional noises

A more detailed answer in some meaningful special cases such as
Theorem (fractional state + white observation noises)
Let $H:=H_{1} \in(0,1)$ and $H_{2}=\frac{1}{2}$, then

$$
P_{\infty}\left(\beta, \frac{\mu}{\sqrt{\varepsilon}}\right)=\frac{\varepsilon}{\mu^{2}}\left(\frac{1}{\pi} \int_{0}^{\infty} \theta\left(t ; H, \frac{1}{2}\right) d t+\beta+2 \operatorname{Re}\left(z_{0}\right) \mathbf{1}_{\left\{H>\frac{1}{2}\right\}}\right)
$$

Consequently, for any $T>0$,

$$
P_{T}\left(\beta, \frac{\mu}{\sqrt{\varepsilon}}\right) \asymp \frac{(\Gamma(2 H+1) \sin (\pi H))^{\frac{1}{2 H+1}}}{\sin \frac{\pi}{2 H+1}}\left(\varepsilon / \mu^{2}\right)^{\frac{2 H}{2 H+1}}, \quad \text { as } \varepsilon \rightarrow 0 .
$$

- Reduces to the classical spectral formula in the stable case $\beta<0$, but is valid also in the unstable case $\beta \geq 0$!

Application: statistical inference

Estimation of the Hurst parameter from noisy data

Problem

Estimate parameters $H \in\left(\frac{3}{4}, 1\right)$ and $\sigma \in \mathbb{R}_{+}$given the sample

$$
X_{t}=\sigma B_{t}^{H}+\sqrt{\varepsilon} B_{t}, \quad t \in[0, T]
$$

where $\mathrm{fBm} B^{H}$ and $\mathrm{Bm} B$ are independent and $\varepsilon>0$ is known.

Theorem (Shepp 66, Cheridito 01)

The measures induced by X and $\sqrt{\varepsilon} B$ are equivalent iff $H>\frac{3}{4}$.

Estimation of the Hurst parameter from noisy data

Theorem (Chigansky and Kleptsyna, 2023)

The parameters $H \in\left(\frac{3}{4}, 1\right)$ and $\sigma \in(0, \infty)$ can be estimated at the optimal local minimax rates

$$
\varepsilon^{1 /(4 H-2)} \quad \text { and } \quad \varepsilon^{1 /(4 H-2)} \log \varepsilon^{-1}
$$

respectively, as $\varepsilon \rightarrow 0$.

Proof: verification of the "singular" LAN property (as in Brouste and Fukasawa, 18) which hinges on asymptotic analysis of the equation

$$
\varepsilon g(t)+\int_{0}^{T} K(t-s) g(s) d s=K(t), \quad 0<s<t<T
$$

with the weakly singular kernel (of fractional "noise")

$$
K(t)=\sigma H(2 H-1)|t|^{2 H-2} .
$$

Bon anniversaire, LMM!

