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Contribution in a nutshell

’ Stochastic processes ‘

I

’ Integral equations‘

4

’Asymptotic analysis‘

This talk: a brief survey of a few such problems with fBm



Fractional Brownian motion

Definition
The fBm B = (Bf;+ > 0) is the centered Gaussian process with

cov(Bf, B = % (t2H + 527 |t — S’2H)
where H € (0,1) is the Hurst parameter.

e H-self similar Gaussian process with stationary increments
B — B ~ N(0, | — /)
e H-Holder paths

e neither a semimartingale, nor a Markov process for H # %
° for H > %

> Cov(ABY, ABY) = o0

n=1



The eigenvalue problem



The eigenvalue problem

e A random process X = (X;,t € [0, T]) with EX, = 0 and
covariance kernel
K(s,1) = EX,X,.

e Covariance operator
T
(KA = [ K.0f(5)ds
e Find all pairs (A, ¢) with A € R which solve the equation

Ko = Ap.



The eigenvalue problem

General theory
Countably many solutions (A, ¢,) if e.9. K € L*([0, T)?)

e the eigenvalues A, are nonnegative and A, \, 0

e the eigenfunctions ¢, form orthogonal basis in L?([0, T])

Applications:

e Karhunen-Loeve approximation

e Statistical inference (nonparametric tests, etc.)

Filtering and detection problems

Sampling from heavy tailed distributions

e etc.



The eigenvalue problem

Example (Brownian motion)
For K(s,7) = min(s, ) with s,7 € [0, 1]

M=v2 oult) =V2sin(vyt), n=1,2,..

).

N—

where v, = (n —

Some other processes with exact solutions:

e Brownian bridge
Demeaned Bm

OU process

integrated Bm and bridge

etc.

The approach: reduction to BVP for ODEs



Eigenvalue problem for the fBm

Find all solutions (A, ¢) to the integral equation

1
/0 K(s, )p(s)ds = Ap(t), t€[0,1]

for K(s,t) = 3 (s?H + 21 — |t — s|*) with H € (0, 1).

Theorem (Bronski 03)

i H)'(2H + 1 _ (2H+2)(4H+3)
An = Sm(w( ))2(H+1+ ) 0] <n 4H+5 +6> asn — oo.
nm

Other proofs: Nazarov and Nikitin 04, Luschgy and Pageés 04.



Eigenvalue problem for the fBm

Theorem (Chigansky and Kleptsyna, 2018)

1. The eigenvalues satisfy
A\ = sin(mH)D(2H + D)y, 2271 n=1,2,...

where the sequence v, has the asymptotics

+0(n™"), n— oo



Eigenvalue problem for the fBm

Theorem (continued)
2. The eigenfunctions satisfy

©n(t) = V2sin (vnt + 77H)+

0

where fy and fi are explicit (cumbersome) and

_ (E =G =)
M= ]

[\S][O8)

and  sup ‘rn ’ < C(H).
1€[0,1]

B[—



Eigenvalue problem for the fBm

Other “fractional” processes:

e fractional “noise” (formal derivative of fBm)
e fractional Brownian bridge

e fractional OU process

e integrated fBm

e mixed fBm

e Riemann-Liouville process
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An application: small L>-ball
probabilities problem




An application: small ball probabilities

Small ball probabilities problem:

For a given process X = (X;,t € [0, 1]) and a norm || - || find the
asymptotics of P(||X|| <€) ase — 0.

e The most studied is the Gaussian case with L2-norm:
o
P(|IX]|2 < &) = P(anzg < 52) with Z, % N(0, 1)
n=1

Example (Bm, Cameron-Martin 44)

P(||Bll <¢e) = \;:?eexp ( — ég_z)(l +o(1)), e—0.

e Some milestones: Sytaja 75 (Laplace transform), Li 92

(comparison theorem), Dunker, Lifshits and Linde 98

11
(checkable conditions), ...



An application: small ball probabilities

Nikitin and Nazarov 2004:

e The asymptotics of —log P(||X||> < ¢) is determined by the
asymptotics of \,

Corollary (Bronski 03)
For any H € (0, 1),

—logP(IB?||> < &) = B(H)e™ /(1 + 0(e)), €—0,

where
(sin(rH)T(2H + 1)) /%

. \I+1/CH
((2H+1)SID2H+1)+/( )

B(H) =H
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An application: small ball probabilities

Nikitin and Nazarov 2004

e The asymptotics of P(||X||» < ¢) is determined by the
asymptotics of A\,, up to a mult. “distortion” constant.

Corollary (Chigansky and Kleptsyna 2018)
For all H € (0,1),

P(IB" 12 < &) = Ca(H)e" ™ exp (—B(H)=""%) (1 +0(1)), & =0

where C4(H) is (yet unknown) distortion constant and

1 1 1—2H
= (3/4+H2+ - —— 7).
2H</ + +2(1+2H)2>
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Fredholm integral equations




Fredholm integral equations

First kind:
T
| KG.0g(s)ds =£0), 1 0.7)
0
Second kind:

eg(1) +/O K(s,t)g(s)ds =f(r), t€]0,T]

e c c Ry and T € Ry are parameters
e f(r) is a given “forcing” function

e K(s,t) is a kernel (e.g. covariance function)

14



Fredholm integral equations

General theory
Existence and uniqueness of solutions in appropriate spaces
depending on K and f. The solutions are rarely explicit.

A frequent objective is to find the asymptotics of a specific
functional of the solution w.r.t. a relevant parameter:

e Large time T — oo (finite section limits)

e Small parameter ¢ — 0 (singular perturbation)

S



An application: filtering problem




An application: filtering problem

e State process X = (X;;7 € [0,T])

e Observation process (additive Gaussian noise)

t
YIZM/Xtdt+\/th7 t€10,7]
0

where V is a process independent of X, 1 and € are constants

e The optimal estimator of X; and its MSE

)?t = E(Xf|3r?/) and Pt = E(Xt _)?[)2

16



An application: filtering problem

e The optimal filter is

~ 1 r
XT:/gdeS
Ve Jo £

e The weight function g(s) solves integro-differential equation
a [T 0
— —K d
B J, 40Kt s

'Lf/OT Kx(r,s)g(r)dr = %Kx(s‘, T), s€][0,T],

with the covariance kernels
Kx(s,t) = Cov(X;,X;) and Ky(s,1) = Cov(Vs, V;).
e The minimal MSE is given by the functional

pr=L (2 ["sn 2 mtrsiar)

. ‘S‘ZT' 17



The Markov case: Kalman & Bucy

e Observation disturbance V is the Brownian motion
— integral equation of second kind

e Markov state process (OU)
t
X; :ﬁ/ Xids+W;, t€]0,T]
0

where W is a Brownian motion.
= reduction of the integral equation to the Riccati ODE

P, = 28P; + 1 — (u//2)*P?

18



The Markov case: Kalman & Bucy

Elementary analysis of the Riccati ODE

PtzzﬁptﬁLl*(N/\E)thz

reveals that

e the steady state error exists and is given by

7 B* + p*/e
PT(ﬁ’ %) T—00 w2 /e

e the small noise asymptotics is

PT(B, %) = \f(1+0(1)) ase =0, VT>0.

[Q]: Kalman-Bucy model with fBm’s W and V2 7

19



Kalman-Bucy model with fractional noises

Theorem (Afterman, Ch., Kleptsyna, Marushkevych 22)

For the Kalman-Bucy model with fBm's WH and V12, the
steady state error exists:

Pe(5.22) = Jim pr(5. )
and, for any T > 0,

H,;
1+H1—H2'

s

NG

lim =~ Py (5, ) = Poo(0,12)  with v =

20



Kalman-Bucy model with fractional noises

A more detailed answer in some meaningful special cases such as

Theorem (fractional state + white observation noises)
Let H :=H, € (0,1) and H, = 3, then

p e (1 [®,.
Po(pr ) = 2 (5 ot s+ 2k )

Consequently, for any T > 0,

1
3 2H41
Pr (/3, .. ) = (CCH + .1> sin(rH)) (s/uz)”ﬂl, ase — 0.
Ve S0 2y

e Reduces to the classical spectral formula in the stable case

8 < 0, but is valid also in the case 3 > 0!
21



Application: statistical inference




Estimation of the Hurst parameter from noisy data

Problem

Estimate parameters H € (3,1) and o € Ry given the sample
X, = oB? + \/eB,, t€0,T]
where fBm B and Bm B are independent and € > 0 is known.

Theorem (Shepp 66, Cheridito 01)
The measures induced by X and \/eB are equivalent iff H >

22



Estimation of the Hurst parameter from noisy data

Theorem (Chigansky and Kleptsyna, 2023)
The parameters H € (3,1) and o € (0,00) can be estimated at

the optimal local minimax rates

61/(4H_2) and 51/(4H—2) logs_l.

respectively, as € — 0.

Proof: verification of the "singular" LAN property (as in Brouste
and Fukasawa, 18) which hinges on asymptotic analysis of the

equation
T
eg(t) +/ K(t—s)g(s)ds=K(t), 0<s<t<T
0

with the weakly singular kernel (of fractional "noise"

K(t) = cH(2H — 1)|t]*1 2. s



Bon anniversaire, LMM!
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