HJB equation on process space Application to mean field control

Nizar Touzi New York University

Joint work with Jianjun Zhou (Northwest A & F University, Yangling) and Jianfeng Zhang (University of Southern California)

May 22, 2024 LMM 30th Birthday

HJB equation and stochastic control

HJB equation in \mathbb{R}^d :

$$\partial_t u + \inf_{a \in A} \left\{ b(.,a) \cdot Du + \frac{1}{2} \sigma \sigma^{\mathsf{T}}(.,a) : D^2 u - k(.,a) u + f(.,a) \right\} = 0$$

$$u|_{t=T} = g$$

Control process α prog. meas. with values in A

Controlled state process driven by BM W in \mathbb{R}^d :

$$X_t^{t,x} = x$$
 and $dX_s^{t,x} = b(s, X_s^{t,x}, \alpha_s)ds + \sigma(s, X_s^{t,x}, \alpha_s)dW_s$

Stochastic control problem

$$V(t,x) = \inf_{\alpha} \mathbb{E}\left[\frac{g(X_T^{t,x})\beta_{t,T} + \int_t^T \beta_{t,s} f(s,X_s^{t,x},\alpha_s)ds}{}\right], \ \beta_{t,s} := e^{-\int_t^s k(r,X_r^{t,x},\alpha_r)dr}$$

Under standard assumptions, V viscosity solution of the HJB equation

Viscosity solutions (Crandal & Lions)

Consider second order parabolic PDE

$$F(t,x,u(t,x),Du(t,x),D^2u(t,x)) = 0$$

$$\underline{\mathcal{A}}u(t,x) := \left\{ \varphi \in C^2 \colon 0 = (u^* - \varphi)(t,x) = \max(u^* - \varphi) \right\}$$

Def. u viscosity subsol if $F[\phi] \leq 0$ for all $\phi \in \underline{\mathcal{A}}u(t,x)$

$$\overline{\mathcal{A}}u(t,x) := \left\{ \varphi \in C^2 \colon 0 = (u_* - \varphi)(t,x) = \min(u_* - \varphi) \right\}$$

Def. u viscosity supersol if $F[\phi] \geq 0$ for all $\phi \in \overline{\mathcal{A}}u(t,x)$

OCAL COMPACTNESS OF UNDERLYING SPACE

Consistency: For $u \in C^{1,2}$, u classical sol. **iff** u viscosity sol.

Stability: v_{ε} be visco supersol, loc bdd in (ε, t, x) . Then $\underline{v}(t, x) := \liminf_{(\varepsilon, t', x') \to (0, t, x)} v_{\varepsilon}(t', x')$ is a visco supersol

Uniqueness ...

General class including 2nd order equations :

$$F(x, u, Du, D^2u) = 0$$
, on open $\mathcal{O} \subset \mathbb{R}^d$, F str. \nearrow in u , \searrow in D^2u

- ullet Assume ${\cal O}$ bdd for simplicity
- If $U-V \le 0$ on $\partial \mathcal{O}$ with $M:=\max(U-V)>0$. Then $M=(U-V)(x_0)$ for some $x_0 \in \mathcal{O}$ (by loc. compactness
- If U, V classical subsol and supersol, then the FOC and SOC imply

$$F(x_0, U(x_0), DU(x_0), D^2U(x_0)) \le 0 \le F(x_0, V(x_0), DV(x_0), DU(x_0), D^2V(x_0))$$

$$= F(x_0, U(x_0) - M, DU(x_0), DV(x_0), D^2V(x_0))$$

$$< F(x_0, U(x_0), DU(x_0), D^2U(x_0))$$

Contradiction! Hence

General class including 2nd order equations :

$$F(x, u, Du, D^2u) = 0$$
, on open $\mathcal{O} \subset \mathbb{R}^d$, F str. \nearrow in u , \bigvee in D^2u

- Assume O bdd for simplicity
- If $U-V \le 0$ on $\partial \mathcal{O}$ with $M:=\max(U-V)>0$. Then $M=(U-V)(x_0)$ for some $x_0 \in \mathcal{O}$ (by loc. compactness)
- ullet If U, V classical subsol and supersol, then the FOC and SOC imply

$$F(x_0, U(x_0), DU(x_0), D^2U(x_0)) \le 0 \le F(x_0, V(x_0), DV(x_0), DU(x_0), D^2V(x_0))$$

$$= F(x_0, U(x_0) - M, DU(x_0), DV(x_0), D^2V(x_0))$$

$$< F(x_0, U(x_0), DU(x_0), D^2U(x_0))$$

Contradiction! Hence

 $M := \max(U - V) \le 0$

General class including 2nd order equations :

$$F(x, u, Du, D^2u) = 0$$
, on open $\mathcal{O} \subset \mathbb{R}^d$, F str. \nearrow in u , \searrow in D^2u

- ullet Assume ${\cal O}$ bdd for simplicity
- If $U V \le 0$ on $\partial \mathcal{O}$ with $M := \max(U V) > 0$. Then $M = (U V)(x_0)$ for some $x_0 \in \mathcal{O}$ (by loc. compactness)
- If *U*, *V* classical subsol and supersol, then the FOC and SOC imply

$$F(x_0, U(x_0), DU(x_0), D^2U(x_0)) \le 0 \le F(x_0, V(x_0), DV(x_0), DU(x_0), D^2V(x_0))$$

$$= F(x_0, U(x_0) - M, DU(x_0), DV(x_0), D^2V(x_0))$$

$$< F(x_0, U(x_0), DU(x_0), D^2U(x_0))$$

Contradiction! Hence

General class including 2nd order equations:

$$F(x, u, Du, D^2u) = 0$$
, on open $\mathcal{O} \subset \mathbb{R}^d$, F str. \nearrow in u , \searrow in D^2u

- Assume O bdd for simplicity
- If $U V \le 0$ on $\partial \mathcal{O}$ with $M := \max(U V) > 0$. Then $M = (U - V)(x_0)$ for some $x_0 \in \mathcal{O}$ (by loc. compactness)
- If *U*, *V* classical subsol and supersol, then the FOC and SOC imply

$$F(x_0, U(x_0), DU(x_0), D^2U(x_0)) \le 0 \le F(x_0, V(x_0), DV(x_0), DU(x_0), D^2V(x_0))$$

$$= F(x_0, U(x_0) - M, DU(x_0), DV(x_0), D^2V(x_0))$$

$$< F(x_0, U(x_0), DU(x_0), D^2U(x_0))$$

Contradiction! Hence $M := \max(U - V) < 0$

If $U \in USC$ and $V \in LSC$, use doubling variables:

$$M_n := \max_{x \in \operatorname{cl}(\mathcal{O}), y \in \operatorname{cl}(\mathcal{O})} U(x) - V(y) - n|x - y|^2$$
, attained at (x_n, y_n)

If $U \in USC$ and $V \in LSC$, use doubling variables :

$$M_n := \max_{x \in \operatorname{cl}(\mathcal{O})} U(x) - V(y_n) - n|x - y_n|^2$$
, attained at x_n

If $U \in USC$ and $V \in LSC$, use doubling variables :

$$M_n := \max_{x \in \operatorname{cl}(\mathcal{O})} U(x) - V(y_n) - n|x - y_n|^2$$
, attained at x_n

 φ test function for U at x_n

$$F(x_n, U(x_n), \underbrace{D\phi(x_n)}_{=n(x_n-y_n)}) \leq 0$$

If $U \in USC$ and $V \in LSC$, use doubling variables :

$$M_n := \max_{y \in \operatorname{cl}(\mathcal{O})} U(x_n) - V(y) - n|x_n - y|^2$$
, attained at y_n

 φ test function for U at x_n and ψ test functions for V at y_n

$$F(x_n, U(x_n), \underbrace{D\phi(x_n)}_{=n(x_n-y_n)}) \le 0 \le F(y_n, V(y_n), \underbrace{D\psi(y_n)}_{=n(x_n-y_n)})$$

If $U \in USC$ and $V \in LSC$, use doubling variables :

$$M_n := \max_{y \in \operatorname{cl}(\mathcal{O})} U(x_n) - V(y) - n|x_n - y|^2$$
, attained at y_n

 φ test function for U at x_n and ψ test functions for V at y_n

$$F(x_n, U(x_n), \underbrace{D\phi(x_n)}_{=n(x_n-y_n)}) \leq 0 \leq F(y_n, V(y_n), \underbrace{D\psi(y_n)}_{=n(x_n-y_n)})$$

• For first order F(x, u, Du) = 0:

$$F(x_n, U(x_n), n(x_n - y_n)) \le F(y_n, U(x_n) - M_n - n|x_n - y_n|^2, n(x_n - y_n)) \cdots$$

If $U \in USC$ and $V \in LSC$, use doubling variables :

$$M_n := \max_{y \in \operatorname{cl}(\mathcal{O})} U(x_n) - V(y) - n|x_n - y|^2$$
, attained at y_n

 φ test function for U at x_n and ψ test functions for V at y_n

$$F(x_n, U(x_n), \underbrace{D\phi(x_n)}_{=n(x_n-y_n)}) \leq 0 \leq F(y_n, V(y_n), \underbrace{D\psi(y_n)}_{=n(x_n-y_n)})$$

• For first order F(x, u, Du) = 0:

$$F(x_n, U(x_n), n(x_n - y_n)) \le F(y_n, U(x_n) - M_n - n|x_n - y_n|^2, n(x_n - y_n)) \cdots$$

• Because $D^2\varphi=nI_d$ and $D^2\psi=-nI_d$, we need in addition the Crandall-Ishii's lemma...

First extensions

Many extensions starting from the HJB equation on Hilbert spaces

- Extension by Lions, Swiech, Gozzi, ...
- Crandall-Lions and Li-Yong use

Test functions of the form $\varphi + \phi$ with **nonsmooth** ϕ

HJB equation on the continuous paths space $C^0(\mathbb{R}_+,\mathbb{R}^d)$

Consider the non-Markov version of the previous control problem

$$X_{\wedge t}^{t,\omega} = \omega_{\wedge t} \text{ and } dX_s^{t,\omega} = b_s(X_{\wedge s}^{t,\omega},\alpha_s)ds + \sigma_s(X_{\wedge s}^{t,\omega},\alpha_s)dW_s$$

Stochastic control problem

$$V_t(\omega) := \sup_{\alpha} \mathbb{E}\Big[g(X_{\wedge T}^{t,\omega}) \beta_{t,T} + \int_t^T \beta_{t,s} f(s, X_{\wedge s}^{t,\omega}, \alpha_s) ds \Big], \ \beta_{t,s} := e^{-\int_t^s k_r^{\alpha} dr}$$

HJB characterization (Under standard assumptions)

V is the unique viscosity solution of the path-dependent HJB equation

$$\partial_t V + \inf_{a \in A} \left\{ b(.,a) \cdot \partial_\omega V + \frac{1}{2} \sigma \sigma^{\mathsf{T}}(.,a) : \partial^2_{\omega\omega} V - k(.,a) V + f(.,a) \right\} = 0$$

- BSDE (pardoux-Peng), GBSDE (Peng) and 2BSDE (Soner-NT-Zhang)
- ullet Ekren-NT-Zhang : Test functions $\mathbb{E}-$ tangent
- Jianjun Zhou : back to standard def (pointwise tangency) using Ekeland-Borwein-Preis variational Lemma

Finite population X^1, \ldots, X^N driven by independent BMs W^i in \mathbb{R}^d

$$X_t^i = x^i \text{ and } dX_s^i = b(s, X_s^i, \underline{m_N}(X_s), \alpha_s^i)ds + \sigma(\cdots)dW_s^i$$

Stochastic control problem

$$:= \frac{\mathbf{1}}{N} \sum_{i=1}^{N} \delta_{X_{s}^{i}}$$

$$V_{N}(t,x) = \sup_{\alpha^{1},...,\alpha^{N}} \mathbb{E}\left[\sum_{i=1}^{N} g(X_{T}^{i}, m_{N}(X_{T})) + \int_{t}^{T} f(X_{s}^{i}, m_{N}(X_{s}), \alpha_{s}^{i}) ds\right]$$

$$\text{HJB}: \ 0 = \partial_t V_N + \sum_{i=1}^N \inf_{a \in A} \left\{ b(x^i, m_N(x), a) \cdot D_{x^i} V_N + \frac{1}{2} \sigma \sigma^{\mathsf{T}}(\cdots) : D_{x^i x^i}^2 V_N + f(\cdots) \right\}$$

Then
$$V_N(t,x) \longrightarrow V(t,m) := \sup_{\alpha} \mathbb{E}\left[g(X_T, \mathcal{L}_{X_T}) + \int_t^T f(s,X_s,\alpha_s)ds\right]$$

where $\mathcal{L}_{X_t} = m$ and $dX_s = b(s,X_s,\mathcal{L}_{X_s},\alpha_s)ds + \sigma(\ldots)dW_s$

and V solution of the HJB equation on the Wasserstein space

$$0 = \partial_t V + \int \inf_{a \in A} \left\{ b(x, m, a) \cdot \frac{\partial_L V}{\partial_L V} + \frac{1}{2} \sigma \sigma^{\mathsf{T}}(\cdots) : \frac{\partial_x \partial_L V}{\partial_L V} + f(\cdots) \right\} m(dx)$$

Finite population X^1, \ldots, X^N driven by independent BMs W^i in \mathbb{R}^d

$$X_t^i = x^i \text{ and } dX_s^i = b(s, X_s^i, \underline{m_N}(X_s), \alpha_s^i)ds + \sigma(\cdots)dW_s^i$$

Stochastic control problem $:= \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{\epsilon}^{i}}$

$$(X_T)$$

$$V_{N}(t,x) = \sup_{\alpha^{1},...,\alpha^{N}} \mathbb{E}\left[\sum_{i=1}^{N} \frac{g\left(X_{T}^{i}, m_{N}(X_{T})\right)}{+\int_{t}^{T} f\left(X_{s}^{i}, m_{N}(X_{s}), \alpha_{s}^{i}\right) ds}\right]$$

$$\text{HJB}: \ 0 = \partial_t V_N + \sum_{i=1}^N \inf_{a \in A} \left\{ b(x^i, m_N(x), a) \cdot D_{x^i} V_N + \frac{1}{2} \sigma \sigma^{\mathsf{T}}(\cdots) : D_{x^i x^i}^2 V_N + f(\cdots) \right\}$$

Then
$$V_N(t,x) \longrightarrow V(t,m) := \sup_{\alpha} \mathbb{E}\left[g(X_T, \mathcal{L}_{X_T}) + \int_t^T f(s,X_s,\alpha_s)ds\right]$$

where $\mathcal{L}_{X_t} = m$ and $dX_s = b(s,X_s,\mathcal{L}_{X_s},\alpha_s)ds + \sigma(\ldots)dW_s$

$$0 = \partial_t V + \int \inf_{a \in A} \left\{ b(x, m, a) \cdot \frac{\partial_L V}{\partial_L V} + \frac{1}{2} \sigma \sigma^{\mathsf{T}}(\cdots) : \frac{\partial_x \partial_L V}{\partial_L V} + f(\cdots) \right\} m(dx)$$

Finite population
$$X^1, \dots, X^N$$
 driven by independent BMs W^i in \mathbb{R}^d

$$X_t^i = x^i$$
 and $dX_s^i = b(s, X_s^i, \underline{m_N(X_s)}, \alpha_s^i)ds + \sigma(\cdots)dW_s^i$

Stochastic control problem $:= \frac{1}{N} \sum_{i=1}^{N} \delta_{X_s^i}$

$$V_{N}(t,x) = \sup_{\alpha^{1},...,\alpha^{N}} \mathbb{E}\left[\sum_{i=1}^{N} g\left(X_{T}^{i}, m_{N}(X_{T})\right) + \int_{t}^{T} f\left(X_{s}^{i}, m_{N}(X_{s}), \alpha_{s}^{i}\right) ds\right]$$

$$\text{HJB}: \ 0 = \partial_t V_N + \sum_{i=1}^N \inf_{a \in A} \left\{ b(x^i, m_N(x), a) \cdot D_{x^i} V_N + \frac{1}{2} \sigma \sigma^{\mathsf{T}}(\cdots) : D_{x^i x^i}^2 V_N + f(\cdots) \right\}$$

Then
$$V_N(t,x) \longrightarrow V(t,m) := \sup_{\alpha} \mathbb{E}\left[g(X_T, \mathcal{L}_{X_T}) + \int_t^T f(s, X_s, \alpha_s) ds\right]$$

where $\mathcal{L}_{X_t} = m$ and $dX_s = b(s, X_s, \mathcal{L}_{X_s}, \alpha_s) ds + \sigma(\dots) dW_s$

and V solution of the HJB equation on the Wasserstein space

$$0 = \partial_t V + \int \inf_{a \in A} \left\{ b(x, m, a) \cdot \left| \frac{\partial_L V}{\partial_L V} \right| + \frac{1}{2} \sigma \sigma^{\mathsf{T}}(\cdots) : \left| \frac{\partial_{\mathsf{X}} \partial_L V}{\partial_{\mathsf{X}} \partial_L V} \right| + f(\cdots) \right\} m(dx)$$

Finite population X^1, \ldots, X^N driven by independent BMs W^i in \mathbb{R}^d

$$X_t^i = x^i \text{ and } dX_s^i = b(s, X_s^i, \underline{m_N(X_s)}, \alpha_s^i)ds + \sigma(\cdots)dW_s^i$$

 $:= \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}^{i}}$

Stochastic control problem

$$V_{N}(t,x) = \sup_{\alpha^{1},...,\alpha^{N}} \mathbb{E}\left[\sum_{i=1}^{N} \frac{g\left(X_{T}^{i}, m_{N}(X_{T})\right)}{+\int_{t}^{T} f\left(X_{s}^{i}, m_{N}(X_{s}), \alpha_{s}^{i}\right) ds}\right]$$

$$\text{HJB}: \ 0 = \partial_t V_N + \sum_{i=1}^N \inf_{a \in A} \left\{ b(x^i, m_N(x), a) \cdot D_{x^i} V_N + \frac{1}{2} \sigma \sigma^{\mathsf{T}}(\cdots) : D_{x^i x^i}^2 V_N + f(\cdots) \right\}$$

Then
$$V_N(t,x) \longrightarrow V(t,m) := \sup_{\alpha} \mathbb{E} \Big[g(X_T, \mathcal{L}_{X_T}) + \int_t^T f(s, X_s, \alpha_s) ds \Big]$$

where $\mathcal{L}_{X_t} = m$ and $dX_s = b(s, X_s, \mathcal{L}_{X_s}, \alpha_s) ds + \sigma(\dots) dW_s$

and V solution of the HJB equation on the Wasserstein space

$$0 = \partial_t V + \int \inf_{a \in A} \left\{ b(x, m, a) \cdot \frac{\partial_L V}{\partial_L V} + \frac{1}{2} \sigma \sigma^{\mathsf{T}}(\cdots) : \frac{\partial_x \partial_L V}{\partial_x \partial_L V} + f(\cdots) \right\} m(dx)$$

Mean field control with common noise

Suppose particles dynamics affected by a ${\bf common~BM~}W^0$:

$$X_t^i = x^i$$
 and $dX_s^i = b(s, X_s^i, m_N(X_s), \alpha_s^i)ds + \sigma(\cdots)dW_s^i + \sigma^0(\cdots)dW_s^0$

Then, the corresponding mean field limit is:

$$\mathcal{L}(X_t) = m \text{ and } dX_s = b(s, X_s, \frac{\mathcal{L}_{X_s|W_0}}{\mathcal{L}_{X_s|W_0}}, \alpha_s) ds + \sigma(\cdots) dW_s + \frac{\sigma^0(\cdots) dW_s^0}{\sigma^0(\cdots) dW_s^0}$$

Then, mean field control problem with common noise

$$V(t,m) := \sup_{\alpha} \mathbb{E} \left[g(X_T, \mathcal{L}_{X_s|W_0}) + \int_t^T f(s, X_s, \alpha_s) ds \right]$$

and V solution of a second order HJB eq. on the Wasserstein space ...

- 1st order equation on the Wasserstein space :
 - involving \(\partial_{L}u\) only: Bertucci, Cardaliaguet-Quincampoix, Conforti, Kraaij-Tonon, Feng-Katsoulakis, Gangbo, Nguyen-Tudorascu, Gangbo-Tudorascu, Jimenez, Marigonda-Quincampoix
 - involving $\partial_L u$ and $\partial_X \partial_L u$: Wu-Zhang, Cosso-Gozzi-Kharroubi-Pham-Rosestolato, Talbi-NT-Zhang, Burzoni-Ignazio-Reppen-Soner, Soner-Yan
- 2nd order equation on the Wasserstein space :
 - Bayraktar-Ekren-Zhang extend the Crandal Ishii's lemma to the present context
 - Gangbo-Mayorga-Swiech, Mayorga-Swiech, Daudin-Seeger: lifting on the Hilbert space of random variables

Our main objective is

Underlying space is the set of random processes

- Natural framework, [Next Example 1]
- Test functions will have a smooth component and a singular one

Comparison result by (several) **doubling variables argument only**, thus avoiding the Crandall-Ishii lemma [see Next Example 2]

Example 1: Mean field control with common noise

Let W^0 BM and consider the MF control pb.

$$\mathfrak{V}(0,\mu):=\inf_{\alpha}\mathbb{E}\big[\mathit{G}\big(\mathcal{L}_{X_{T}\mid\mathcal{F}_{T}^{W^{\mathbf{0}}}}\big)\big], \text{ where } \mathit{G}:\mathcal{P}_{2}(\mathbb{R}^{d})\longrightarrow\mathbb{R}$$

$$\text{ and } \mathcal{L}_{X_{\mathbf{0}}|\mathcal{F}_{T}^{W^{\mathbf{0}}}} = \mu, \qquad dX_{t} = B\big(X_{t}, \mathcal{L}_{X_{t}|\mathcal{F}_{T}^{W^{\mathbf{0}}}}, \alpha_{t}\big)dt + \sigma^{0}dW^{0}, \ t \geq 0$$

Define
$$b: \Omega \times \mathbb{R}^d \times \mathbb{L}^2(\mathbb{R}^d) \times A \longrightarrow \mathbb{R}^d$$
 and $g: \Omega \times \mathbb{L}^2(\mathbb{R}^d) \longrightarrow \mathbb{R}$:

$$b(\omega,x,\frac{\underline{\xi}}{}\,,a):=B\big(x,\mathcal{L}_{\xi\mid\mathcal{F}_t^{W^0}}(\omega),a\big) \text{ and } g(\omega,\frac{\underline{\xi}}{}\,\big):=G\big(\mathcal{L}_{\xi\mid\mathcal{F}_t^{W^0}}(\omega)\big)$$

where we denote $\underline{\xi}$ to emphasize dependence on the r.v. ξ .

 \implies Control problem on the space of r.v.

$$\label{eq:continuous_equation} \begin{split} \mathfrak{V}(0,\mu) &= V(0,X_0) := \inf_{\alpha} \mathbb{E} \big[g(\underline{X}_T) \big] \\ \text{where } dX_t &= b\big(X_t,\underline{X}_t,\alpha_t \big) dt + \sigma^0 dW^0, \quad t \geq 0 \end{split}$$

Example 2 : constant diffusion setting

Consider the mean field control problem

$$\mathfrak{V}(0,\mu) = \inf_{\alpha} G(\mathcal{L}_{X_{T}})$$

where $\mathcal{L}_{X_0} = \mu$ and $dX_t = B(X_t, \alpha_t)dt + dW_t, t \geq 0$

Introduce the change of variable

$$x_t := X_t - W_t$$
, $b_t(\omega, x, a) := B(x + W_t(\omega), a)$, $g(\underline{x}_T) := G(\mathcal{L}_{x_T + W_T})$

Here again $g: \mathbb{L}^2(\mathbb{R}^d) \longrightarrow \mathbb{R}$. Then $\mathfrak{V}_t(\underline{\xi}) = V_t(\underline{\xi} - \underline{W}_t)$, where

 V_t is a 1st order control problem... on the space of random variables

$$V_t(\underline{\xi}) := \inf_{\alpha} g(\underline{x}_T), \qquad \mathcal{L}_{x_0} = \mu \text{ and } dx_t = b_t(x_t, \alpha_t) dt$$

Doubling variables for the reduced 1st order problem

In the setting of the first order control problem, it is natural to adapt the doubling variables argument with test functions

$$\varphi(t,\underline{\xi}) := V(s_n,\zeta_n) + n\Big(|t-s_n|^2 + \mathbb{E}[|\xi-\zeta_n|^2]\Big)$$

Recalling our change of variable, this induces the following test function for the initial problem :

$$\phi(t,\underline{\xi}) := V(s_n,\zeta_n) + n\Big(|t-s_n|^2 + \mathbb{E}[|\xi-W_t-\zeta_n|^2]\Big)$$

 \implies introduces a dependence on joint law of (ξ, ζ_n, W)

 $\Longrightarrow \varphi$ is smooth, BUT ϕ is not $C^{1,2}...$ (see later in which sense); However, it is absolutely continuous...

The above ϕ is our typical singular component of test function

The control problem on the space of random processes

We shall consider the control problem on the space of processes

$$V_t(\underline{\xi}) := \inf_{\alpha \in \mathcal{A}_{[t,T]}} g(\underline{X}^{t,\xi,\alpha}) + \int_t^T f_s(\underline{X}^{t,\xi,\alpha},\underline{\alpha}_s) ds$$

where the controlled state is defined by

$$X_{\wedge t}^{t,\xi,\alpha} = \xi$$
, and for $s \geq t$:

$$dX_s^{t,\xi,\alpha} = b_s(X^{t,\xi,\alpha},\alpha_s, \underline{X}^{t,\xi,\alpha}, \underline{\alpha}_s) ds + \sigma_s(X^{t,\xi,\alpha},\alpha_s, \underline{X}^{t,\xi,\alpha}, \underline{\alpha}_s) dW_s$$

All above functions are maps :

$$[0,T] \times \Omega \times \mathbb{R}^d \times \mathbb{S}^2 \times \mathbb{H}^2 \longrightarrow \mathbb{R}^d, \mathbb{R}d \times d, \text{ or } \mathbb{R}$$

 \mathbb{S}^p : continuous $\mathbb{F}-$ p.m. proc. with $\|X\|_{\mathbb{S}^p}=\||X|_{\infty}\|_{\mathbb{L}^p(\mathbb{R})}<\infty$

 \mathbb{H}^2 : \mathbb{F} -p.m. proc. with $\|\alpha\|_{\mathbb{H}^2} = \|\alpha\|_{\mathbb{L}^2([0,T]\times A)} < \infty$

Proposition

Under standard Lipschitz conditions, V is uniformly Lipschitz in ξ , and locally $\frac{1}{2}$ -Hölder continuous in t:

$$|V_t(\xi) - V_{t'}(\xi')| \le C \|\xi_{\wedge t} - \xi'_{\wedge t}\|_{\mathbb{S}^2} + C (1 + \|\xi_{\wedge t}\|_{\mathbb{S}^2}) |t - t'|^{\frac{1}{2}}$$

HJB equation on the process space

Motivated by "horizontal-vertical derivatives" [Dupire '09, Cont & Fournié '13],

Definition (Smooth maps on the process space)

A map $\varphi:[t,T] imes \mathbb{S}^p o \mathbb{R}$ is $C^{1,2}$ if $\varphi\in C^0$ and there exist C^0 maps

$$\begin{split} \partial_t \varphi : [t,T] \times \mathbb{S}^p &\to \mathbb{R} \quad \text{and} \quad \partial_X \varphi : [t,T] \times \mathbb{S}^p &\longrightarrow \mathbb{L}^{\frac{p}{p-1}}(\mathbb{R}^d) \\ \partial_{xX} \varphi : [t,T] \times \mathbb{S}^p &\longrightarrow \mathbb{L}^{\frac{p}{p-1}}(\mathbb{R}^{d \times d}) \end{split}$$

such that $\partial_X \varphi_t(\underline{\xi})$, $\partial_X \varphi_t(\underline{\xi})$ \mathcal{F}_t —meas. and for all Itô process X

$$d\varphi_t(\underline{X}) = \partial_t \varphi_t(\underline{X}) dt + \mathbb{E} \Big[\partial_X \varphi_t(\underline{X}) \cdot dX_t + \frac{1}{2} \partial_{XX} \varphi_t(\underline{X}) \cdot d\langle X \rangle_t \Big]$$

Combining with the dynamic programming, we obtain the DPE :

HJB equation on the process space

$$\partial_t U_t(\underline{\xi}) + \inf_{\alpha} \mathbb{E} \left[b_t^{\alpha} \partial_X U_t(\underline{\xi}) + \frac{1}{2} \sigma^{\alpha} \sigma_t^{\alpha^{\top}} : \partial_{xX} U_t(\underline{\xi}) \right] + f_t(\underline{\xi}, \underline{\alpha}) = 0, t < T, \xi \in \mathbb{S}^p$$

Main results

Theorem (Characterization of value function)

Under our assumptions, the value function V is the unique viscosity solution of the HJB equation with terminal condition $V_T=g$ in the class of functions satisfying

$$|V_{t}(\underline{\xi}) - V_{t'}(\underline{\xi'})| \le C \|\xi_{\wedge t} - \xi'_{\wedge t}\|_{\mathbb{S}^{2}} + C (1 + \|\xi_{\wedge t}\|_{\mathbb{S}^{2}}) |t - t'|^{\frac{1}{2}}$$

Theorem (Comparison result)

Let $U^0, U^1 \in C^0(\mathbb{Q}_0^2)$ be viscosity subsolution and supersolution, respectively, of the HJB equation satisfying

$$\left| U_t^i(\xi) - U_{t'}^i(\xi') \right| \le C \|\xi_{\wedge t} - \xi_{\wedge t}'\|_{\mathbb{S}^2} + C \left(1 + \|\xi_{\wedge t}\|_{\mathbb{S}^2}\right) |t - t'|^{\frac{1}{2}}$$

Then, under our assumptions, $U_T^0 \leq U_T^1$ on \mathbb{Q}_0^2 implies $U^0 \leq U^1$ on \mathbb{S}^2

Test functions on \mathbb{Q}_0^2

For
$$U\in C^0(\mathbb{Q}^2_0)$$
 and (t,ξ)

$$\mathfrak{F}^{+}U_{t}(\underline{\xi}) := \left\{ (\varphi, \phi) \in C^{1,2}(\mathbb{Q}_{t}^{6}) \times \begin{array}{c} C^{+}(\mathbb{Q}_{t}^{6}) \\ \end{array} : \\ \left[U - (\varphi + \begin{array}{c} \phi \end{array}) \right]_{t}(\underline{\xi}) = \sup_{\mathbb{Q}_{t}^{6}} \left[U - (\varphi + \begin{array}{c} \phi \end{array}) \right] \right\} \\ \mathfrak{F}^{-}U_{t}(\underline{\xi}) := \left\{ (\varphi, \phi) \in C^{1,2}(\mathbb{Q}_{t}^{6}) \times \begin{array}{c} C^{-}(\mathbb{Q}_{t}^{6}) \\ \end{array} : \\ \left[U - (\varphi + \begin{array}{c} \phi \end{array}) \right]_{t}(\underline{\xi}) = \inf_{\mathbb{Q}^{6}} \left[U - (\varphi + \begin{array}{c} \phi \end{array}) \right] \right\}$$

Singular component of test function

Given $(s,\zeta) \in \mathbb{Q}_0^p$ and continuous $(\beta,\gamma): A \times \mathcal{A} \to \mathbb{R}^d, \mathbb{R}^{d \times d}$, denote :

$$\mathcal{I}_t^{\alpha}(\xi) := \mathcal{I}_t^{\beta,\gamma,s,\zeta,\alpha}(\xi) := \xi_t - \zeta_s - \int_s^t \beta_r^{\alpha} dr - \int_s^t \gamma_r^{\alpha} dW_r$$

where $\beta_r^{\alpha} := \beta(\alpha_r, \underline{\alpha}_r)$

Definition

For $s \in [0, T]$, we denote $C^+(\mathbb{Q}^p_s)$ the set of maps of the form :

$$\phi_t(\underline{\xi}) := \inf_{\alpha \in \mathcal{A}_{[s,T]}} \left\{ k \mathbb{E} \Big[\big| \mathcal{I}^{\alpha}_t(\xi) \big|^p + \big| \mathcal{I}^{\alpha}_{t'}(\xi') \big|^p \Big] + \int_{t'}^t \psi^{\alpha}_r dr \right\} \text{ for all } (t,\xi) \in \mathbb{Q}^p_s$$

for some $k \geq 0$, $\zeta \in \mathbb{S}^p$, $(t', \xi') \in \mathbb{Q}^p_s$, β, γ as above, $\psi \in C^0(\mathcal{A}, \mathbb{R})$.

Moreover, let $C^-(\mathbb{Q}^p_s) := -C^+(\mathbb{Q}^p_s)$

Fact : Any $\phi \in C^+(\mathbb{Q}_s^p)$ is a.c. wrt Lebesgue

Viscosity solutions of the HJB equation on \mathbb{Q}^2_0

Frozen state process defined for all (t, ξ) and α

$$\bar{X}_s^{t,\xi,\alpha} := \xi_t + 1_{\{s \geq t\}} \int_t^s b_r^{t,\xi,\alpha} dr + \int_t^s \sigma_r^{t,\xi,\alpha} dW_r, \ s \geq 0,$$

where $\psi_{\mathbf{s}}^{t,\xi,\alpha}:=\psi(t,\xi_{\wedge t},\alpha_{\mathbf{s}},\underline{\xi}_{\wedge t},\underline{\alpha}_{\mathbf{s}})$ for $\psi=b,\sigma$

Definition

(i) $U \in C^0(\mathbb{Q}_0^2)$ is a viscosity subsolution of HJB equation if

$$\partial_t \varphi_t(\underline{\xi}) + \liminf_{\delta \to 0} \inf_{\alpha} \frac{1}{\delta} \int_t^{t+\delta} \left[H_s(\underline{\xi}_{\wedge t}, \partial_X \varphi_t(\underline{\xi}), \partial_{xX} \varphi_t(\underline{\xi}), \underline{\alpha}_s) + \dot{\phi}_s(\underline{\bar{X}}^{t,\xi,\alpha}) \right] ds \ge 0$$

for all $(t,\xi)\in\mathbb{Q}_0^6$ and $(\varphi,\phi)\in\mathfrak{F}^+U_t(\underline{\xi})$

(ii) $U \in C^0(\mathbb{Q}^2_0)$ is a viscosity supersolution of HJB equation if

$$\partial_{t}\varphi_{t}(\xi) + \limsup_{\delta \to 0} \inf_{\alpha} \frac{1}{\delta} \int_{t}^{t+\delta} \left[H_{s}(\underline{\xi}_{\wedge t}, \partial_{X}\varphi_{t}(\underline{\xi}), \partial_{xX}\varphi_{t}(\underline{\xi}), \underline{\alpha}_{s}) + \dot{\phi}_{s}(\underline{\bar{X}}^{t,\xi,\alpha}) \right] ds \leq 0$$

for all $(t,\xi)\in\mathbb{Q}_0^6$ and $(\varphi,\phi)\in\mathfrak{F}^-U_t(\underline{\xi})$

(iii) $U \in C^0(\mathbb{Q}_0^2)$ is a viscosity solution of HJB if ...