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Introduction: realized variance

Let Πa,b be a partition of an interval (a, b] ⊂ R, that is, a finite collection
of disjoint subintervals of (a, b] with⋃

(s ,t]∈Πa,b

(s , t] = (a, b].

Denote |Πa,b | = max(s ,t]∈Πa,b |t − s |.
For a process Z , denote Zs ,t = Zt − Zs .
Let M be a (log) price process. The realized variance (a.k.a realized
quadratic variation) on a period (a, b] (associated with Πa,b) is defined as∑

(s ,t]∈Πa,b

|Ms ,t |2 .

For a sequence of partitions Πn
a,b with |Πn

a,b | → 0, we have∑
(s ,t]∈Πn

a,b

|Ms ,t |2 → [M]a,b = 〈Mc〉a,b +
∑

t∈(a,b]
|ΔMt |2 in prob.
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Introduction: high-frequency data for estimating
low-frequency distribution

If M is an L2 martingale, then

E[|Ms ,t |2] = E[|M0,t |2 − |M0,s |2]
and so

E


∑

(s ,t]∈Πa,b

|Ms ,t |2
 = E[|Ma,b |2]

that connects high and low frequency distributions.
Neuberger (12) introduced the notion of the aggregation property:

E[g (Xs ,u)|ℱs] = E[g (Xs ,t)|ℱs] + E[g (Xt ,u)|ℱs]
for s ≤ t ≤ u. This property is met by g (x) = x2 and X = M.
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Introduction: realized skewness

The aggregation property implies

E


∑

(s ,t]∈Πa,b

g (Xs ,t)
 = E [g (Xa,b)]

for any partition Πa,b. Neuberger also found that the aggregation property
is met by

g2(x , y ) = x3 + 3xy , X(2) = (M ,M (2))
if M is an L3 martingale, where M

(n)
t = E[(MT −Mt)n |ℱt] for t ≤ T .

Noticing

E[g2(X(2)
0,T )] = E[(MT −M0)3],

Neuberger named
∑

(s ,t]∈Π0,T

g2(X(2)
s ,t) the realized skewness.
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Introduction: realized kurtosis

Bae and Lee (20) extended the idea to find that the aggregation is met by

g3(x , y , z) = x4 + 6x2y + 3y2 + 4xz , X = (M ,M (2) ,M (3)).
Further,

E[g3(X(3)
0,T )] = E[(MT −M0)4] − 3E[(MT −M0)2]2.

Comments:

the way to find those polynomials was brute-force; actually they
showed that there is no other analytic function of X(3) with the
aggregation property (up to a linear combination).

moments (and cumulants) of an asset under the pricing measure can
be computed from its option market data. A bias of the realized
cumulant is interpreted as a risk premium.
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The main finding in F. and Matsushita (21)

Our finding is that

gn(x1 , . . . , xn) := Bn+1(x1 , . . . , xn , 0)
satisfies the aggregation property with

X(n) = (X (1) , . . . ,X (n))
for any n ∈ N, where Bn+1 is the (n + 1)-th complete Bell polynomial and
X (i) is the ith conditional cumulant process of an Ln+1 integrable r.v. X .
In fact, we show

E[gn(X(n)
s ,t )|ℱs] = −E[X (n+1)

s ,t |ℱs].
When X = MT , then X(3) = (M ,M (2) ,M (3)), X (n)

T
= 0 for n ≥ 2, and

X
(n+1)
s = E[gn(X(n)

s ,T )|ℱs] = E


∑

(t ,u]∈Πs ,T

gn(X(n)
t ,u)

����ℱs

 .
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The complete Bell polynomials

Definition.

For (x1 , . . . , xn) ∈ Rn, the n th complete Bell polynomial Bn(x1 , . . . , xn) is
defined by

Bn(x1 , . . . , xn) = 𝜕n

𝜕zn
exp

(
n∑
i=1

xi
z i

i !

) ����
z=0

with B0 = 1

Examples are

B1(x1) = x1 ,

B2(x1 , x2) = x21 + x2 ,

B3(x1 , x2 , x3) = x31 + 3x1x2 + x3 ,

B4(x1 , x2 , x3 , x4) = x41 + 6x21x2 + 4x1x3 + 3x22 + x4 ,

. . .
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Bn(x1 , 0, . . . , 0) = 𝜕n

𝜕zn

∞∑
k=0

1

k!
(x1z)k

�����
z=0

=
𝜕n

𝜕zn
1

n!
(x1z)n

����
z=0

= (x1)n ,

Bn(0, . . . , 0, xn) = 𝜕n

𝜕zn

∞∑
k=0

1

k!

(
xn

zn

n!

)k �����
z=0

=
𝜕n

𝜕zn

(
xn

zn

n!

)����
z=0

= xn.

Proposition. (binomial property)

Let n ∈ N and (x1 , . . . xn), (y1 , . . . , yn) ∈ Rn. Then,

Bn(x1 + y1 , . . . , xn + yn) =
n∑

j=0

(
n

j

)
Bn−j (x1 , . . . , xn−j )Bj (y1 , . . . , yj ).

In particular, we have a push-out property:

Bn(x1 , . . . , xn−1 , xn) = Bn(x1 , . . . , xn−1 , 0) + Bn(0, . . . , 0, xn)
= Bn(x1 , . . . , xn−1 , 0) + xn.
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Cumulants

Let p ≥ 1 and X ∈ Lp. For n ≤ p, the n th cumulant 𝜅n of X is defined by

𝜅n = (−√−1)n 𝜕n

𝜕zn
log E[e

√−1zX ]��
z=0.

We have

E[X n] = Bn(𝜅1 , . . . , 𝜅n) = Bn(𝜅1 , . . . , 𝜅n−1 , 0) + 𝜅n

because

exp

( ∞∑
n=1

xn
zn

n!

)
=

∞∑
n=0

Bn(x1 , . . . , xn)z
n

n!

as long as convergent, and it is convergent for Bn(x1 , . . . , xn) = E[X n]
when X ∈ L∞ (Note L∞ is dense in Lp).
Note that the cumulants are uniquely determined by

𝜅n = E[X n] − Bn(𝜅1 , . . . , 𝜅n−1 , 0).
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Conditional cumulant process

On a filtered probability space, we define the n th conditional cumulant

process X (n) = {X (n)
t } by X

(1)
t = E[X |ℱt] and

X
(n)
t = E[X n |ℱt] − Bn(X (1)

t , . . . ,X (n−1)
t , 0).

We can take a cadlag version.

Taking a regular conditional distribution of X , almost surely,

X
(n)
t = (−√−1)n 𝜕n

𝜕zn
log E[e

√−1zX |ℱt]
��
z=0.

When X is ℱT measurable, X
(1)
T

= X and so,

X
(n)
T

= X n − Bn(X , 0, . . . , 0) = X n − X n = 0

for all n ≥ 2.
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Key lemma

Suppose X ∈ Ln and let X(n) = (X (1) , . . . ,X (n)).
Lemma.

For any stopping times 𝜏 ≤ 𝜐,

E[Bn(X(n)
𝜏,𝜐)|ℱ𝜏] = 0

Consequences:

Let gn(x1 , . . . , xn) = Bn+1(x1 , . . . , xn , 0). Then,
E[gn(X(n)

𝜏,𝜐)|ℱ𝜏] + E[X (n+1)
𝜏,𝜐 |ℱ𝜏] = E[Bn+1(X(n+1)

𝜏,𝜐 )|ℱ𝜏] = 0

hence the aggregation property:

E[gn(X(n)
𝜎,𝜏)|ℱ𝜎] + E[gn(X(n)

𝜏,𝜐)|ℱ𝜎] = E[gn(X(n)
𝜎,𝜐)|ℱ𝜎].

Not only Bn(X(n)
t ) = E[X n |ℱt] but also Bn(X(n)

0,t) is a martingale.
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Proof of Lemma. When X ∈ L∞,

1

E[ezX |ℱ𝜏] =
( ∞∑
n=0

E[X n |ℱ𝜏]z
n

n!

)−1
= exp

(
−

∞∑
n=1

X
(n)
𝜏

zn

n!

)
=

∞∑
n=0

Bn(−X(n)
𝜏 )z

n

n!

on a neighborhood of z = 0. This implies( ∞∑
n=0

E[X n |ℱ𝜏]z
n

n!

) ( ∞∑
n=0

Bn(−X(n)
𝜏 )z

n

n!

)
=

∞∑
n=0

n∑
j=0

(
n

j

)
E[X n−j |ℱ𝜏]Bj (−X(j)

𝜏 )z
n

n!

is equal to 1, and so for n ≥ 1,

0 =
n∑
j=0

(
n

j

)
E[X n−j |ℱ𝜏]Bj (−X(j)

𝜏 ) = E

[
n∑
j=0

(
n

j

)
E[X n−j |ℱ𝜐]Bj (−X(j)

𝜏 )
����ℱ𝜏

]
.

The right hand side coincides with E[Bn(X(n)
𝜐 −X(n)

𝜏 )|ℱ𝜏] by the binom. property.
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Example: Lévy process (Bn is time-space harmonic)

When X = LT for a Lévy process L with triplet (𝜇, 𝜎2 , 𝜈),
X

(1)
t = Lt + (T − t)𝜇,

X
(2)
t = (T − t)

(
𝜎2 +

∫
x2𝜈(dx)

)
,

X
(n)
t = (T − t)

∫
xn𝜈(dx) (n ≥ 3)

and so,

X
(1)
0,t = Lt − L0 − 𝜇t ,

X
(2)
0,t = −t

(
𝜎2 +

∫
x2𝜈(dx)

)
,

X
(n)
0,t = −t

∫
xn𝜈(dx) (n ≥ 3).

We have that Bn(X(n)
0,t) is a martingale. In particular for L = W (a Brownian

motion), Bn(X(n)
0,t) = tn/2Hn(t−1/2Wt), where Hn is the n th Hermite polynomial.
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A cumulant recursion formula

Theorem.

Let p > 2, T > 0 and X ∈ Lp be ℱT measurable. Then, for any (possibly
stochastic) partition Π𝜎,T and for any n ≤ p − 1,

X
(n+1)
𝜎 = E


∑

(𝜏,𝜐]∈Π𝜎,T

gn(X(n)
𝜏,𝜐)

����ℱ𝜎


Proof: Use the aggregation property and the fact that

E[gn(X(n)
𝜎,T )|ℱ𝜎] = −E[X (n+1)

𝜎,T |ℱ𝜎] = X
(n+1)
𝜎 .

Here we recall that if X is ℱT measurable and n ≥ 1, then

X
(n+1)
T

= 0.
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Realized cumulants

If M is a martingale and X = MT , then X (1) = M. We name∑
(𝜏,𝜐]∈Π𝜎,T

gn−1(X(n−1)
𝜏,𝜐 )

the n th realized cumulant for M associated with the partition Π𝜎,T of the
period (𝜎,T ].

More generally, for an ℱT measurable random variable X ,∑
(𝜏,𝜐]∈Π𝜎,T

gn−1(X(n−1)
𝜏,𝜐 )

is an unbiased estimator of the conditional cumulant X
(n)
𝜎 .
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High-frequency limit

By taking the high-frequency limit |Π𝜎,T | → 0, we have the following.

Theorem.

If X ∈ ⋂
p>1 L

p and ℱT measurable, then

X
(n+1)
𝜎 = E


∑

s∈(𝜎,T ]
gn(ΔX(n)

s ) + 1

2

n∑
j=1

(
n + 1

j

) [
X (n+1−j) ,X (j)

]c
𝜎,T

����ℱ𝜎


for any n ∈ N, where [·, ·]c is the continuous part of the quadratic
covariation process.

Continuous case (ΔX(n) = 0) by Lacoin, Rhodes and Vargas (23), and
Friz, Gatheral and Radoičic (22).

An independent derivation based on signature cumulants by Friz,
Hager and Tapia (22).
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(Note for the proof) We use the following lemma Itô’s formula provides:

Lemma

For any semimartingale Y and any polynomial g with g (0) = 𝜕g (0) = 0, as
|Π𝜎,T | → 0, we have∑

(𝜏,𝜐]∈Π𝜎,T

g (Y𝜏,𝜐) → 1

2

d∑
i ,j=1

𝜕i𝜕jg (0)[Y i ,Y j ]c𝜎,T +
∑

t∈(𝜎,T ]
g (ΔYt).

The sum of the quadratic terms contained in g = gn = Bn+1(·, 0) is

Bn+1,2(x1 , . . . , xn) := 1

2

n∑
j=1

(
n + 1

j

)
xn+1−jxj

since

exp

( ∞∑
i=1

xi
z i

i !

)
= 1 +

∞∑
i=1

xi
z i

i !
+ 1

2

( ∞∑
i=1

xi
z i

i !

)2
+ . . . .
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Application: affine stochastic Volterra equations

Let X be a semimartingale with characteristic (Yb,Yc ,Y 𝜈) (for trunction
𝜒(z) = z) with X0 = 0, where

Yt = 𝜇(t) +
∫ t

0

𝜙(t − s)Xsds ,

𝜇 : R+ → R+ is continuous, 𝜙 : (0,∞) → R+ is L1, b ∈ R, c ≥ 0 and 𝜈 is

a measure on R \ {0} with

∫
|z |k𝜈(dz) < ∞, k = 1, . . . , n.

Abi Jaber (22): The unique weak solution exists and YT ∈ Ln under some
conditions. Examples include

(Y , 0,Y 𝛿1)... X is a Hawkes process with the intensity

¤Yt = ¤𝜇(t) +
∫ t

0

𝜙(t − s)dXs .

(0,Y , 0)... (hyper rough) Heston model.

Masaaki Fukasawa (Osaka University) Realized cumulants for martingales
Le Mans mathematics laboratory 30th anniversary
18 / 22



Cumulant recursion for affine SVE

Theorem. The n th cumulant process of XT is given by

X
(n)
t =

∫ T

t

𝜓(n)(T − s)Ξt(ds)

for n ≥ 2, where

Ξt(s) = E[Ys |ℱt] = 𝜉0(s) +
∫ t

0

𝜓(s − u)d(X − Yb)u ,
𝜓(n) = g 𝜈n−1(1 + b𝜓,𝜓(2) ∗ 𝜓, . . . ,𝜓(n−1) ∗ 𝜓),

g 𝜈n−1(x1 , . . . , xn−1) =
n∑

k=2

𝜈kBn,k (x1 , . . . , xn−k+1),

𝜈k = c1k=2 +
∫

zk𝜈(dz)

and Bn,k are partial Bell polynomials.
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Example: (simplified) affine forward variance model

Consider a continuous martingale {Xt} satisfying

d〈X 〉t = 𝜉tdt , d𝜉st = k(s − t)dXt , 𝜉st = E[𝜉s |ℱt],
where k is a square-integrable function with k(t) = 0 for t ≤ 0. The
important example is

k(t) = 𝜈𝛾t𝛼−1E𝛼,𝛼(−𝛾t𝛼)1(0,∞)(t), E𝛼,𝛽(z) =
∞∑
n=0

zn

Γ(n𝛼 + 𝛽)
corresponding to the rough Heston model (and the Heston when 𝛼 = 1).

In this case, the conditional cumulant processes for XT are

X
(1)
t = Xt , X

(2)
t = E[〈X (1) ,X (1)〉t ,T |ℱt] =

∫ T

t

𝜉stds
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By the recursion formula, we have:

Theorem

For any n ≥ 2, X
(n)
t =

∫ T

t

k (n)(T − s)𝜉stds, where k (n) is recursively
defined as

k (n+1) = Bn+1,2(1, k (2) ∗ k , . . . , k (n) ∗ k)
with k (2) = 1.

Comments:

This is for a simplified version of the (rough) Heston model but
essentially the same for the full version of it.

A reformulation of the diamond calculus by Alòs et al. (2020).

The Edgeworth expansion up to any order then follows for European
option prices under the rough Heston model.

By the Tauberian theorem, k (n)(T ) = O(T (n−2)𝛼) as T ↓ 0, and so,

T−n/2X (n)
0 = O(T (n−2)H ), H = 𝛼 − 1/2, implying “Power-law skew”.
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Example: (simplified) affine forward intensity model

Consider a purely discontinuous martingale {Xt} satisfying

ΔXt ∈ {0, 𝜖}, d〈X 〉t = 𝜆tdt , d𝜆s
t = k(s − t)dXt , 𝜆s

t = E[𝜆s |ℱt]
(a compensated Hawkes process) It is known that X converges to the
rough Heston as 𝜖 → 0. The conditional cumulant processes for XT are

X
(1)
t = Xt , X

(2)
t = E[[X (1) ,X (1)]t ,T |ℱt] =

∫ T

t

𝜆s
tds

and by the recursion formula, we have:

Theorem

For any n ≥ 2, X
(n)
t =

∫ T

t

k (n)(T − s)𝜆s
tds, where k (n) is recursively

defined as
k (n+1) = 𝜖−2gn(𝜖, 𝜖k (2) ∗ k , . . . , 𝜖k (n) ∗ k)

with k (2) = 1. Notice k (n+1) = Bn+1,2(1, k (2) ∗ k , . . . , k (n) ∗ k) + O(𝜖).
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