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Introduction: realized variance

Let I1, » be a partition of an interval (a, b] C R, that is, a finite collection
of disjoint subintervals of (a, b] with

J =0l
(S,t]EHa,b
Denote |I1, 5| = max(s tjem, , [t — sl
For a process Z, denote Zs ; = Z; — Z.

Let M be a (log) price process. The realized variance (a.k.a realized
quadratic variation) on a period (a, b] (associated with I1, ) is defined as

> Mol

(S/t] €1_[a/b

For a sequence of partitions I17 | with |17 .| — 0, we have

Z |Ms,e” = [M]ap = (M)a 5+ Z |AM,|? in prob.
(Srt]eng/b te(a,b]
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Introduction: high-frequency data for estimating
low-frequency distribution

If M is an L2 martingale, then
E[IMs,¢|*] = E[|Mo,«|* — [Mo,s|?]

and so
El D IMoel?| = ElIM, 02
(srt]ena,b

that connects high and low frequency distributions.
Neuberger (12) introduced the notion of the aggregation property:

Elg(Xs,0)|Fs] = E[g(Xs, )| Fs] + Elg(Xe,u) | F5]

for s < t < u. This property is met by g(x) = x> and X = M.
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Introduction: realized skewness

The aggregation property implies

El D 8(Xs0)| =E[g(Xan)]

(Srt]ena,b

for any partition I, 5. Neuberger also found that the aggregation property
is met by

g2(x,y) =x° +3xy, X% =(M,M?)
if M is an L3 martingale, where I\/IE") = E[(M71 — M)"|F¢] for t < T.
Noticing
Elg(X0 )] = E[(M7 — Mo)?],

Neuberger named Z @(XQ) the realized skewness.
(S/t]EHO,T
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Introduction: realized kurtosis

Bae and Lee (20) extended the idea to find that the aggregation is met by
g3(x,y,2) = x* +6x°y +3y% +4xz, X =M, M, MO).

Further,

Elgs (X0 )] = E[(M7 — Mo)*] - 3E[(Mr — Mo)?J2.
Comments:

@ the way to find those polynomials was brute-force; actually they
showed that there is no other analytic function of X with the
aggregation property (up to a linear combination).

e moments (and cumulants) of an asset under the pricing measure can
be computed from its option market data. A bias of the realized
cumulant is interpreted as a risk premium.
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|
The main finding in F. and Matsushita (21)

Our finding is that
gn(X]./ L an) = BIH-].(X]./ LR /an 0)
satisfies the aggregation property with
XM = (x®, .., xM)

for any n € N, where Bp.1 is the (n + 1)-th complete Bell polynomial and
X is the ith conditional cumulant process of an L™ integrable r.v. X.

In fact, we show .
Elg(XU)IF5] = ~EIXUT VI,

When X = Mr, then X® = (M, M@, M®)), X\ = 0 for n > 2, and

Xs(n+l) _ E[gn(Xir,’)T)W:s] =E Z gn(X(tZ),) Fsl -

(tlu]GHS/T
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The complete Bell polynomials

Definition.
For (x1,...,xn) € R", the n th complete Bell polynomial B,(x1,...,x,) is
defined by

n .
n i
z

Bn(x1,...,xn) = EP exp ZX,'F

i=1

z=0

with Bp =1

Examples are
Bi(x1) = xi,
Ba(x1, %) = xi + xa,
Bs(x1, x2,x3) = Xl3 + 3x1x0 + X3,
Bi(x1, X2, X3, X4) = xf + 6x12x2 +4x1x3 + 3x22 + x4,
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8,‘, 0 1 K an n B ,
Balx, 0,1, 0) = 52 3 i 0| = S5 =)
k=0 2=0 z=
1\ PLI
Ba0r 00) = 5 D (—.) = oz (—.) o
k=0 2=0 z=

Proposition. (binomial property)

Let ne N and (x1,...xn),(y1,...,¥n) € R". Then,

1 n
Bo(x1+yi,..., Xn+yn) = Z (j)Bn—j(Xl, o Xn=)Bily1, - )
j=0

In particular, we have a push-out property:
Bn(Xll cee zXn—ern) = Bn(Xlr ceo s Xn-1, O) + Bn(oz ey 0/ Xn)
= Bu(x1,...,Xp-1,0) + Xp.
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Cumulants

Let p > 1 and X € LP. For n < p, the n th cumulant x, of X is defined by

= (- \/_)" Iog E[eﬁzx]|2=0.

We have
E[Xn] = Bn(Klr sy Kn) = Bn(Klr -, Knp-1, 0) +Kn

because

i n i n

z z
exp EX”F = E B,,(xl,...,x,,)m
. por .

n=1
as long as convergent, and it is convergent for B,(x1,...,xn) = E[X"]
when X € L* (Note L™ is dense in LP).
Note that the cumulants are uniquely determined by

— n
Knp = E[X ] - Bn(Kl, Ce ,Kn_l,O).
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Conditional cumulant process

On a filtered probability space, we define the n th conditional cumulant
process X (" = {X,_f")} by Xt(l) = E[X|¥:] and

X" = EX°IF] - BoXY, ..., X", 0),

We can take a cadlag version.
@ Taking a regular conditional distribution of X, almost surely,
a" -
X = (_«/_1)"@ log E[eV"X| 7] _,.-

@ When X is F7 measurable, X(Tl) = X and so,

X0 = X"~ B,(X,0,...,00= X" = X" =0
for all n > 2.
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Key lemma

Suppose X € L" and let X(" = (XM, . X)),
Lemma.

For any stopping times 7 < v,

E[B,(X")|F:] =0

Consequences:
o Let gy(x1,...,xn) = Bpy1(x1, ..., xn,0). Then,
n n+1 n+1
E[gn (V)| F2] + EIXV|72] = E[Braa (X3 V)| F2] = 0

hence the aggregation property:
Elgn(XU0)|Fo] + E[gn(XU)IFo] = Elga(X7)|Fo 1.

o Not only B,(X{”) = E[X"| ;] but also B,(Xy")) is a martingale.
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Proof of Lemma. When X € L*,

on a neighborhood of z = 0. This implies

(ZEX"m )(ZB(XW) ) i

n=0 j=

>

( ) (X" |7 1B~ X(”)—

3 [} exr 7|
=0 M

The right hand side coincides with E[B,(X\"” — X\")|#:] by the binom. property.
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is equal to 1, and so for n > 1,

=3, (7)eer e -x) -




-
Example: Lévy process (B, is time-space harmonic)

When X = Lt for a Lévy process L with triplet (i, 02, v),
XY = 1+ (T -,

Xt(Z) =(T-1t) (02 + / x2v(dx)) ,

X" = (T - 1) / x"v(dx) (n>3)
and so,

XN = Le - Lo - put,

Xé?g =—t (02 + / x2v(dx)) ,
X3 = —t / x"v(dx) (n > 3).

We have that B,,(Xf)'z) is a martingale. In particular for L = W (a Brownian
motion), Ba(X{)) = t"/2Hy(t"Y/2W,), where Hj, is the n th Hermite polynomial.
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A cumulant recursion formula

Theorem.

Let p>2, T >0 and X € LP be ¥7 measurable. Then, for any (possibly
stochastic) partition I, 7 and for any n < p—1,

X" =E| Y e®O)|E

(TIU]EHU,T

Proof: Use the aggregation property and the fact that
1 1
Elgn(X)IFo] = —E[X\" 751 = XY
Here we recall that if X is $7 measurable and n > 1, then

(n+1) _
X\ = o,
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Realized cumulants

If M is a martingale and X = M7, then X! = M. We name
> g

(t,v]elly, T

the n th realized cumulant for M associated with the partition I, 7 of the
period (o, T].

More generally, for an 1 measurable random variable X,

Z gn—l(XEfr,Zl)

(TrU]EHG,T

is an unbiased estimator of the conditional cumulant Xé").
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High-frequency limit

By taking the high-frequency limit |I1; 7| — 0, we have the following.
Theorem.

If X € Mps1 LP and F7 measurable, then

Fo

n n 1 . 1€
XM =g D gaaxt ))+22(n+ )[X(”+1 h, x|

o, T
s€(o,T]

for any n € N, where [

,+]¢ is the continuous part of the quadratic
covariation process.

e Continuous case (AX(™ = 0) by Lacoin, Rhodes and Vargas (23), and
Friz, Gatheral and Radoicic (22).

@ An independent derivation based on signature cumulants by Friz,
Hager and Tapia (22).
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(Note for the proof) We use the following lemma 1t6's formula provides:

Lemma

For any semimartingale Y and any polynomial g with g(0) = dg(0) =0, as
II1;, 7| — 0, we have

d
S eV =5 > ALY 4 Y s(AYL),

(t,v]ell, 7 ij=1 te(o,T]

The sum of the quadratic terms contained in g = g, = By11(+,0) is

1< (n+1
Bn+1,2(X1/ ce an) = 5 g ( i )Xn+1—ij
Jj=1

since

0 i o . 0 2

z! z! 1 z!
p(z_)1+z_+2(z_) .
1= = =
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Application: affine stochastic Volterra equations

Let X be a semimartingale with characteristic (Yb, Yc, Yv) (for trunction
X(z) = z) with Xo = 0, where

Ye = u(t) + /Ot ¢(t — s5)Xsds,

t: Ry > Ry is continuous, ¢ : (0,00) > Ry is L}, beR, c>0and v is
a measure on R\ {0} with [ |z|*v(dz) <0, k=1,...,n.

Abi Jaber (22): The unique weak solution exists and Y7 € L" under some
conditions. Examples include
@ (Y,0,Y01)... X is a Hawkes process with the intensity

Ye = o(t) + /Otgb(t — 5)dX;.

e (0,Y,0)... (hyper rough) Heston model.
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Cumulant recursion for affine SVE

Theorem. The n th cumulant process of Xt is given by

.
X" = / P(T = $)Ze(ds)
for n > 2, where
Eu(s) = E[Ya|Fe) = Eols) + /0 (s — u)d(X = Yb),
P =g+ by, Py, g ),

gn (X1, ..., Xno1) = Z Vi B (X1, -+ ) Xn—k+1),
k=2

Vi = Cly=p + / Z¥v(dz)

and B, x are partial Bell polynomials.
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-
Example: (simplified) affine forward variance model
Consider a continuous martingale {X;} satisfying
A(X) = &dt, dE; = k(s — 0)dXe, & = E[&|F],

where k is a square-integrable function with k(t) = 0 for t < 0. The
important example is

k(t) = V)/ta_lEa,a(—)/ta)l(oloo)(t), Ea,ﬁ(z) = e ——
nz:;) I'(na + B)

corresponding to the rough Heston model (and the Heston when a = 1).

In this case, the conditional cumulant processes for X7 are

.
XY =X, x? =e[(x®, xVy, r|F] = / &sds
t
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By the recursion formula, we have:

Theorem

-
For any n > 2, Xt(") = / k(T = 5)&3ds, where k(" is recursively
defined as '

kKD = B o(1, kP w k, o k™« k)

with k@ = 1.

Comments:

@ This is for a simplified version of the (rough) Heston model but
essentially the same for the full version of it.

o A reformulation of the diamond calculus by Alos et al. (2020).

@ The Edgeworth expansion up to any order then follows for European
option prices under the rough Heston model.

@ By the Tauberian theorem, k("(T) = O(T("~22) as T | 0, and so,
702X\ = O(T(=2H) H = a —1/2, implying “Power-law skew”.
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Example: (simplified) affine forward intensity model

Consider a purely discontinuous martingale {X;} satisfying
AX: € {0,e}, d(X)r = Adt, dA; = k(s —t)dX:, A7 = E[As|Ft]

(a compensated Hawkes process) It is known that X converges to the
rough Heston as € — 0. The conditional cumulant processes for Xt are

>
XY =X X = ElX, XLl = [ azas
t

and by the recursion formula, we have:

Theorem

-
For any n > 2, Xt(") = / KT = s)A%ds, where k(" is recursively
defined as '

kKD = 6725 (e, ek® w k, ..., ek™ x k)
with k@ = 1. Notice k™Y = B,11,(1, k@« k,..., k" « k) + O(e).

Fe"Mans ma maticstaboratory ni

Masaaki Fukasawa (Osaka University) Realized cumulants for martingales 22/22




