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Motivation

Extreme Value (EV) regression context

EV regression (Davison and Smith, 90): analysis of factors affecting the
likelihood of extreme events

In EVR models: tail distribution of the variable of interest approximated
by a generalized Pareto distribution (GPD) (EVT - Balkema-Pickands
theorem), which scale and shape parameters = functions of covariates
(that influence the distribution of extreme events)

Applications in various fields, as environmental and climate science,
insurance, economics, finance.

In finance, EVR models useful to study the link between the state of the
financial markets and the likelihood of extreme losses of economic
entities.

Application on Hedge Funds (HF) data: estimation of the conditional tail
distributions of a large cross-section of HF, to assess the effect of market
variables on extreme loss distributions of investment vehicles such as
hedge funds (heterogeneous data)



Motivation

Measuring tail risks of hedge funds (HF)

Hedge funds: rely on sophisticated trading strategies and complex
financial products to generate an economic profit.

Identifying financial conditions that influence their extreme downside
risks should help:

to anticipate threats to financial stability

to evaluate their future performance

Difficult as HF data with (i) short history and (ii) unbalanced nature of
available data
↪→ prevents from applying time series methods or standard EVT, as used
for stocks

To overcome this issue, pooling all of the funds’ returns and using an
EVR model relying on financial factors to control for heterogeneity across
funds and time; see Kelly and Jiang (2014; pooling principle, static way),
Mhalla et al. (2022); Dupuis et al. (2022)



Extreme Value Regression

Extreme Value Regression (EVR)
Let Yit: loss at time t ∈ {1, . . . , T} for a given fund i. Assume:

Heavy-tailed (Fréchet) loss - Upper tail of the conditional loss
distribution above a threshold uit well approximated by a GPD
(with ξit > 0)

P (Yit > yit |Yit > uit) ∼
uit large

(
1 +

ξit(yit − uit)
σit

)−1−1/ξit

ξit = ξ(xit) and σit = σ(xit) are the conditional shape and scale
parameters of the tail distribution, with ξit d-dimensional vector of
covariates observed over time (heterogeneity of the data).

We connect them with a log-link function, as in classical GLM:

log(ξit) = xTit βββ
ξ

(
and log(σit) = xTit βββ

σ
)

with βββξ (and βββσ) vectors of regression coefficients, including the
constants

↪→ Interest in ξ(xit), our tail risk measure, and βββξ that captures the
marginal effects of changes in covariates on the tail risk

(See e.g. Davison and Smith (1990); Coles (2001); Chavez-Demoulin et al. (2016).)



Extreme Value Regression

The devil is in the (de)tails...

Choosing tail-threshold u, a non-trivial task in EVR models...

We need u(x), e.g., obtained from quantile regression.

↪→ Several issues:

- Loss of efficiency and weak power of tests for large thresholds

- Selection bias: the larger the α-quantile, the less excesses for
given values of the covariates

- Threshold selected in a preliminary step ⇒ additional
estimation uncertainty in the other parameters, difficult to
account for in inferential procedures (He et al., 2022)

- Lack of threshold stability (Eastoe and Tawn, 2009; de
Carvalho et al., 2022)



Methodology

Methodology

1 Extend the EVR model below the tail-threshold via a splicing
distributional regression model based on Debbabi et al.’s
model/method (efficiency+threshold)

2 Use an artificial censoring procedure to give less importance to
non-tail observations (bias-variance tradeoff).

3 Estimate the model with a (conditional) weighted maximum
likelihood approach to avoid numerical issues in case of
misspecification.

In the literature:

Regression context - Automatic threshold selection procedure for
EVR models in a Bayesian context; de Carvalho et al. (2022)

Non regression - Automatic threshold; e.g. Scarrot and MacDonald
(2012), Naveau et al. (2016), Bader et al. (2018), Debbabi et al.
(2017), Dacorogna et al. (2023)

Weighted ML (not in regression setting): Vandewalle et al. (2007),
Diks et al. (2011), Hüser and Davison (2014), Einmahl et al. (2016)



The splicing regression model

G-E-GPD (splicing) regression model

We build on the automatic threshold method with a hybrid model
by Debbabi et al. (2017); automatic tail threshold

Assume the conditional density of yit ∈ R w.r.t. a vector of
predictors xit,

f(yit;θθθ,xit) = f(yit; µ0, s(xit), ξ(xit), σ(xit)),

satisfies

f(yit;θθθ,xit) =


γ1,it ϕ(yit;µ0, s

2
it) if yit ≤ uit

γ2,it e(yit;λit) ifuit ≤ yi ≤ u∗it
γ3,it g(yit − u∗it; ξit, σit) if yit ≥ u∗it

with g GPD pdf, ϕ Gaussian pdf, and e exponential pdf (with
parameter λit), and where f assumed C1.
↪→ Model distribution denoted G-E-GPD



The splicing regression model

G-E-GPD (splicing) regression model

Smoothness (C1) condition imply the relations
u∗it = µ0 + λit s

2
it ; λit = (1 + ξit)/σit; γ1,it = γ2,it

e(u∗it ;λit)

ϕ(u1,i ;µ0, s2
it)

;

γ2,it =
[
ξit e

−λit uit +

(
1 + λit

Φ(u∗it ;µ0, s
2
it)

ϕ(u∗it ;µ0, s2
it)

)
e−λit u

∗
it

]−1

;

γ3,it = σit γ2,it e(uit;λit)

with uit = u∗it+σit/ξit, (ξit > 0), (see e.g. Embrechts et al.’s book)

for log(sit) = xTit βββ
s

log(σit) = xTit βββ
σ

log(ξit) = xTit βββ
ξ

and θθθ =
[
µ0,βββ

s,βββσ,βββξ
]
∈ R3d+4: the free parameter to estimate.



Estimation

Estimation methods

Maximum Likelihood Estimator (MLE)

θ̂θθ = arg max
θθθ∈Θ

I∑
i=1

ti,ni∑
t=ti,1

log(f(yit;θθθ,xit)),

Weighted Maximum Likelihood Estimator (WMLE), for lowering

the importance of body/left tail (below q(τ)) observations in the

likelihood function; based on artificial censoring procedure
(Cuesta-Albertos et al. (2008); Diks et al. (2011)), to decrease
specification issues

θ̂θθ
w

(τ) = arg max
θθθ∈Θ

I∑
i=1

ti,ni∑
t=ti,1

1(yit≥q(τ)) log(f(yit;θθθ,xit))

+1(yit<q(τ)) log(F (q(τ);θθθ,xit)),

with F (·;θθθ,xit) the cdf of yit.

Estimation principle known as minimum scoring rule inference (Dawid et

al., 2016); it guarantees unbiased estimation under limited assumptions



Estimation

Conditional Weighted ML Estimator (CWMLE)

For the censoring threshold q(τ), choose an observation-specific
threshold, as conditional quantile q(τ) = qit(τ) s.t.
P(yit ≤ qit(τ)|X = xit) = τ (estimated via quantile regression on y)

ˆθθθ
cw

(τ) = arg max
θθθ∈Θ

I∑
i=1

ti,ni∑
t=ti,1

1(yit ≥ qit(τ)) log(f(yit;θθθ,xit))+1(yit < qit(τ)) log(F (qit(τ);θθθ,xit)),

Censoring threshold qit(τ) s.t., for
yit < qit(τ), the contribution to
the censored likelihood function is
log(F (qit(τ);θθθ,xit))

↪→ For q(τ) known (in practice, empirical quantile of (yit)i,t),

θ̂θθ
cw

(τ) = M-estimator, as defined in Van der Vaart (2000) .
Asymptotic normality



Estimation

Data-driven selection of the censoring threshold τ
using the modified Anderson-Darling (ADm) statistic to assess the

goodness-of-fit of a parametric distribution, with a special weight to extreme

values in the upper tail of the distribution (Babu and Toreti, 2016): Select

τopt = arg min
τ∈[0.05,.5]

ADm(τ),

where:

ADm(τ) = n

+∞∫
−∞

(
Φ(x)− F̃n(x, τ)

)2

1− Φ(x)
dΦ(x) with

- Standard normal cdf Φ; Φ−1: its quantile function

- F̃n(·, τ): empirical cdf of the re-indexed pseudo-residuals (ε̂k(τ))k=1,··· ,n,
k = 1, . . . , n, n =

∑I
i=1 ni;

- pseudo-residuals computed from the PIT:

ε̂it(τ) = Φ−1(F (yit; θ̂θθ
w or cw

(τ),xit)),

Under correct specification and good estimation of the splicing model (in

part. in the tail), residuals
d∼ Gaussian (Dunn and Smyth, 1996)



Simulation study

Simulation study - estimates and RMSE

Objective: to quantify the gains in terms of bias and variance of our splicing
approach over standard POT approaches. Consider 3 settings DGPsimulation

(DGPI) correct specification; (DGPII) contaminated body; (DGPIII) misspecified model
• Estimation of βββξ:
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Application to Hedge funds tail risks

Application: Hedge funds (HF) data
Well acknowledged that HF exhibit tail risks but no clear characterization of the
link between economic risk factors and the conditional tail distribution of HF

Recall: Tail risk measured with conditional tail index of the cross-sectional
distribution of the returns (ξ(xt))

EurakHedge database: US HF monthly returns 01/1995 - 12/2021
(Long/short equity funds reporting ≥ 60 months ( uninterrupted history)

Sample: 189,000 pooled observations spanning 1,484 funds, average

reporting of 130 months)

Filtering with Asset Pricing (AP) model of Patton & Ramadorai (2013)

on a fund-by-fund basis (to remove time variations in the mean of the returns (rit)).

↪→ Consider the negative residuals ŷit associated to the observed
returns rit (at time t for fund i) (i.e. the residuals of the AP model

multiplied by -1)

Tail risk analysis on ŷit, pooled (negative) residuals, assumed, at a
given point in time, to have their tail distribution driven by the same
statistical model (Mhalla et al.,2022; Dupuis et al.,2022; Appendix)



Application to Hedge funds tail risks

HF data

↪→ From {ŷ1t, . . . , ŷ1T , . . .}, estimate ξ(xxxt) and βββξ, using EVR model
with our splicing regression approach
Note that ξ(xxxi,t) = ξ(xxxt) ∀i = 1, · · · , I. The predictor matrix of covariates has

been standardized (to have mean and variance of each column equal to 0 and 1,

respectively).

For the censoring threshold: τopt = arg min
τ∈[0.05,.5]

ADm(τ) ∼ 0.25,

i.e. misspecification of the G-E-GPD model in the left tail

Tail-thresholds uit obtained with WMLE and CWMLE
↪→ For HF data: For most combinations of the covariates, suitable
thresholds = conditional quantiles at levels ∈ (0.985, 0.995)
(average ∼ 0.99). For some combinations, lower threshold levels as
small as 0.96.

↪→ Overall, around 1% of observations exceed these thresholds



Application to Hedge funds tail risks

HF data: Regression effects (e.g. for βββξ)

Covariate WMLE CWMLE MLE POT95 POT97.5

βξ(TED) -0.40∗∗∗ -0.40∗∗∗ -0.28∗∗∗ -0.18 -0.12
[−0.52,−0.28] [−0.52,−0.28] [−0.42,−0.15] [−0.38, 0.02] [−0.41, 0.17]

βξ(VIX) -0.51∗∗∗ -0.50∗∗∗ -0.04 -0.07 -0.12
[−0.65,−0.36] [−0.66,−0.35] [−0.15, 0.07] [−0.25, 0.11] [−0.40, 0.16]

βξ(∆TED) 0.12 0.12 0.31∗∗∗ 0.16∗∗ 0.05
[−0.09, 0.33] [−0.08, 0.31] [0.19, 0.42] [0.01, 0.32] [−0.19, 0.29]

βξ(∆MSCI) 0.24∗∗∗ 0.23∗∗∗ 0.09∗∗ 0.05 -0.04
[0.17, 0.30] [0.16, 0.30] [0.01, 0.17] [−0.09, 0.19] [−0.24, 0.15]

βξ(MOM) 0.15∗∗∗ 0.16∗∗∗ -0.01 -0.12 -0.16
[0.09, 0.20] [0.11, 0.21] [−0.08, 0.05] [−0.26, 0.02] [−0.36, 0.04]

βξ(Liq) -0.16∗∗∗ -0.15∗∗∗ -0.01 -0.08 0.04
[−0.24,−0.09] [−0.23,−0.08] [−0.09, 0.06] [−0.26, 0.09] [−0.23, 0.31]

βξ(CredSpr) -0.58∗∗∗ -0.60∗∗∗ -0.29∗∗∗ 0.15 0.23
[−0.66,−0.51] [−0.67,−0.52] [−0.39,−0.19] [−0.03, 0.33] [−0.02, 0.47]

Estimated regression effects for the different estimation methods. Confidence intervals
at the 95% level are in brackets below the estimates. CWMLE has been obtained using
all variables as conditioning variables.∗∗∗ and ∗∗ indicate coefficients significant at the
1% and 5% test levels, respectively.



Conclusion

Conclusion

On the method(s)

↪→ POT is asymptotically ok but inefficient.
↪→ We introduced a simple approach (via G-E-GPD) to estimate

EVR models more efficiently without having to select an
arbitrary threshold

↪→ To challenge the method, various statistical tests performed on
simulated data

On the application to HF: Tail risk of hedge funds, over time,
are well explained by TED, VIX, MSCI and CredSpr

How to deal with large numbers of covariates/model selection?

For more details and references: see the arXiv preprint (2023-24)

Thank you for your attention!



Appendix

Debabbi et al.’s method
A self-calibrating method for modelling heavy tailed probability
distributions (N. Debbabi, M. Kratz, M. Mboup (2017))

Frame: (right) heavy-tailed continuous data → fit the tail using a
GPD with a positive tail index (Fréchet domain of attraction)

Main motivation: to suggest a unsupervised method to determine the
threshold above which we fit the GPD, and to have a good fit for the
entire distribution

Way: introduce a hybrid model with 3 components (G-E-GPD):

a Gaussian distribution to model the mean behavior (CLT)

a GPD for the tail (Pickands theorem)

an exponential distribution to bridge the mean and tail behaviors

Assumption: the distribution (which belongs to the Fréchet domain of
attraction) has a density that is C1.

Remark. The main component in this hybrid model is the GPD one (for heavy
tail), the mean behavior having to be adapted to the context. For instance, for
positive asymmetric distribution, we have replaced the Gaussian component
with a Lognormal one (LOGN-E-GPD hybrid model)(see Dacorogna et al.2023).



Appendix

h(x; θ) =

 γ1 f(x;µ, s), if x ≤ u1,
γ2 e(x;λ), if u1 ≤ x ≤ u2,
γ3 g(x− u2; ξ, σ), if x ≥ u2,

f : Gaussian pdf (µ, s2).

e: Exponential pdf with intensity λ.

g: GPD pdf with tail index ξ and scale pa-

rameter β.

σ =
[
µ, σ, u2, ξ]: the parameters vector.

γ1, γ2 and γ3: the weights (evaluated from

the assumptions (in part. C1) )

β = u2ξ > 0; λ = 1+ξ
σ ; u1 = µ+ λs2
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Back to splicing Regression Model



Appendix

Confidence interval
From the theory of M-estimators (Van der Vaart, 2000), we have:

√
n
(
θ̂θθ
W

(τ)− θθθ0

)
→ N (0, V (θθθ0))

with:

I(θθθ0) = E
[
− ∂2

∂θ2
Ψ(y,θθθ0)

]
S(θθθ0) = E

[{
∂

∂θθθ0
Ψ(y,θθθ0)

}{
∂

∂θθθ0
Ψ(y,θθθ0)

}>]
V (θθθ0) = I(θθθ)−1S(θθθ0)

{
I(θθθ0)−1

}>
,

Ψ(y,θθθ0) =

n∑
i=1

1(yi ≥ qi(τ)) log(f(yi;θθθ0,xi))

+1(yi < qi(τ)) log(F (qi(τ);θθθ0,xi)).

Back to estimation



Appendix

Simulated data - DGP
DGP I Assume the response variable yit simulated from the splicing

regression model, making the model perfectly specified. Data
exhibit a heavy right tail and positive skewness. True conditional
threshold (above which y ∼ EVR model) is not linear in the
covariate (quadratic polynomial)

DGP II Misspecification in the left tail, now heavier compared to DGP I
(but models identical in the right tail)

DGP III Both tails heavier than the normal as well, and the right tail is not
exactly GP-distributed (e.g. data simulated from a t-location scale)

Simulated data from the different DGPs.
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