Set Values and Efficiency of Nonzero Sum Games

Jianfeng ZHANG (USC)

Coauthors: Feinstein, Rudloff, and Iseri, Qiao

30th birthday of the Laboratoire Manceau de Mathematiques : Probability - Statistitics- Risk Le Mans, 5/21-5/31, 2024

Outline

2 Efficiency and mechanism design

Oynamic set value of games

Jianfeng ZHANG (USC) Set Values and Efficiency of Games

Nash equilibrium

- Consider a nonzero sum game with two players :
 - \diamond controls : $a = (a_1, a_2) \in A = A_1 \times A_2$
 - \diamond utilities : $J(a) = (J_1(a), J_2(a))$
- Nash Equilibrium (NE) : $a^* \in A$

 $J_1(a^*) \geq J_1(a_1, a_2^*), \quad J_2(a^*) \geq J_2(a_1^*, a_2), \quad \forall a_1, a_2$

イロト イポト イヨト イヨト

III-posedness

• An example :

J(a)	$a_2 = 0$	$a_2 = 1$	<i>a</i> ₂ = 2
$a_1 = 0$	(100, 100)	(0,102)	(0,102)
$a_1 = 1$	(102,0)	(1,2)	(0,0)
$a_1 = 2$	(102,0)	(0,0)	(3,1)

- Multiple NE : (raw) set value $\mathbb{V}_0 := \{(1,2), (3,1)\}$
- Inefficiency : NEs < socially optimal (100, 100)
- Instability : A small perturbation of the game may change the efficiency dramatically

Two goals

- Mechanism design : Improve the efficiency by small "investment"
- Dynamic set value :
 - $\diamond \mathsf{DPP}$
 - \diamond PDE approach

Outline

2 Efficiency and mechanism design

3 Dynamic set value of games

Jianfeng ZHANG (USC) Set Values and Efficiency of Games

Efficiency

• Recall the example

J(a)	$a_2 = 0$	$a_2 = 1$	<i>a</i> ₂ = 2
$a_1 = 0$	(100, 100)	(0,102)	(0,102)
$a_1 = 1$	(102,0)	(1,2)	(0,0)
$a_1 = 2$	(102,0)	(0,0)	(3,1)

- Efficiency = $\frac{\text{best equilibrium}}{\text{socially optimal control}} = \frac{3+1}{100+100} = 2\%$
 - Price of stability (Anshelevich, Dasgupta, et al 2008)
 - Relatively easy to implement the best equilibrium

Mechanism 1 : κ -implementation

• κ -implementation (Monderer-Tennenholtz 2003) :

 \diamond A mediator designs a rewarding mechanism $\pi = (\pi_1, \pi_2) \in \Pi_{\kappa}$

 $\pi_i \ge 0, \quad \pi_1 + \pi_2 \le \kappa$

 \diamond Consider the modified game : $J^{\pi}(a) := J(a) + \pi(a)$

- The focus of Monderer-Tennenholtz 2003 :
 ◊ Find minimum κ to induce a desired outcome
 ◊ · · ·
- \bullet Our focus : improvement of efficiency by small κ

$$E_{\kappa} := \sup_{\pi \in \Pi_{\kappa}} E(\pi)$$

κ -implementation : an example

• $\kappa = 1$, set $\pi(0,1) = (1,0)$ and $\pi(a) = (0,0)$ for all other a

$J^{\pi}(a)$	$a_2 = 0$	$a_2 = 1$	<i>a</i> ₂ = 2
$a_1 = 0$	(100, 100)	(1, 102)	(0,102)
$a_1 = 1$	(102,0)	(1,2)	(0,0)
$a_1 = 2$	(102,0)	(0,0)	(3,1)

$$\diamond E(\pi) = \frac{0+102}{100+100} = 51\%$$

• $\kappa = 4$, set $\pi(0,0) = (2,2)$ and $\pi(a) = (0,0)$ for all other a

$J^{\pi}(a)$	$a_2 = 0$	$a_2 = 1$	<i>a</i> ₂ = 2
$a_1 = 0$	(102, 102)	(0,102)	(0,102)
$a_1 = 1$	(102,0)	(1,2)	(0,0)
$a_1 = 2$	(102,0)	(0,0)	(3,1)

 $\diamond E(\pi) = 100\%$

(日) (四) (三) (三) (三) (三)

The efficiency function

 \bullet The efficiency function

$$E_\kappa = \left\{egin{array}{ll} 2\%, & 0 \leq \kappa < 1; \ 51\%, & 1 \leq \kappa < 4; \ 100\%, & \kappa \geq 4 \end{array}
ight.$$

- o increasing and right continuous
- discontinuous with possibly small discontinuity points
- ◊ practical importance

Win-win-win situation

• Assume the mediator can charge 5% of their income

	Player 1	Player 2	mediator	Efficiency
$\kappa = 0 \ (3,1)$	2.85	0.95	0.2	2%
$\kappa = 4 \ (100, 100)$	97	97	6	100%

 $\circ 97 = 100 \times 95\% + 2$, $6 = (100 + 100) \times 5\% - 4$

イロン イヨン イヨン イヨン

Further remarks

• Mechanism 2 : taxation

 \diamond Both rewarding and punishment, more power for the mediator

- $E_{\kappa} := \sup_{\pi \in \Pi_{\kappa}} E(\pi)$
 - ♦ Principal-agent problem with multiple agents
 - \diamond The problem is very challenging in continuous time models

Outline

1 Introduction

2 Efficiency and mechanism design

Jianfeng ZHANG (USC) Set Values and Efficiency of Games

- 4 回 ト - 4 三 ト - 4 三 ト

The dynamic model

- Fix $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$, and [0, T]
- *N*-players : $\alpha = (\alpha^1, \cdots, \alpha^N)$
- The model : for $i = 1, \cdots, N$,

$$dX_t^{\alpha} = b(t, X_t^{\alpha}, \alpha_t)dt + \sigma(t, X_t^{\alpha})dB_t;$$

$$J_i(t, x, \alpha) := \mathbf{E}^{t, x} \Big[g_i(X_T^{\alpha}) + \int_t^T f_i(s, X_s^{\alpha}, \alpha_s^i)ds \Big].$$

- \diamond Both *B* and *X* can be multidimensional
- ♦ The volatility control case : $\sigma = \sigma(t, x, \alpha)$, is more involved and is an ongoing work.

 \diamond For simplicity, in this talk we set $d_B = d_X = 1$ and $\sigma \equiv 1$.

イロト イヨト イヨト イヨト

The raw set value

• Definition : $\alpha^* \in \mathcal{A}^N$ is a Nash equilibrium at (t, x), denoted as $\alpha^* \in NE(t, x)$, if

$$J_i(t, x, \alpha^*) \ge J_i(t, x, \alpha^{*, -i}, \alpha^i), \quad \forall \ \alpha^i, \ \forall i.$$

• Raw set value :

$$\mathbb{V}_{0}(t,x) := \left\{ J(t,x,\alpha^{*}) : \alpha^{*} \in \mathsf{NE}(t,x) \right\} \subset \mathbb{R}^{\mathsf{N}}$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

The set value

• For control problem :

$$V_0 := \sup_{\alpha} J(\alpha) = \lim_{\varepsilon \to 0} J(\alpha^{\varepsilon}), \text{ not } V_0 := J(\alpha^*)$$

• Define $NE_{\varepsilon}(t,x)$ in obvious sense and then set value :

$$\mathbb{V}(t,x) := \bigcap_{\varepsilon > 0} \mathbb{V}_{\varepsilon}(t,x) = \lim_{\varepsilon \to 0} \mathbb{V}_{\varepsilon}(t,x),$$
$$\mathbb{V}_{\varepsilon}(t,x) := \Big\{ y : |y - J(\alpha^{\varepsilon})| \le \varepsilon \text{ for some } \alpha^{\varepsilon} \in NE_{\varepsilon}(t,x) \Big\}.$$

- $\diamond~\mathbb V$ is always closed
- $\diamond \mathbb{V} \supset closure(\mathbb{V}_0)$, and the inclusion could be strict

∃ >

A few remarks

• For control problem (N = 1) with value function v(t, x),

 $\mathbb{V}(t,x) = \{v(t,x)\}$, optimal control α^* may not exist

- For two person zero-sum game (N = 2) with game value v(t, x), $\mathbb{V}(t, x) = \{(v(t, x), -v(t, x))\}$, saddle point α^* may not exist
- \bullet It is a lot easier to obtain α^{ε} then to obtain $\alpha^{*}.$ In that case

$$\mathbb{V} \neq \emptyset = \mathbb{V}_0$$

• Buckdahn-Cardaliaguet-Rainer(2004), Frei-dos Reis(2011), Lin (2012)

(日) (四) (三) (三) (三) (三)

The dynamic programming principle

• Recall, for control problem,

$$\begin{aligned} \mathbf{v}(0,x) &= \sup_{\alpha_{[0,t]}} \boldsymbol{E}^{0,x} \Big[\mathbf{v}(t,X_t^{\alpha_{[0,t]}}) + \int_0^t f(\cdots) ds \Big] \\ &= \boldsymbol{E}^{0,x} \Big[\mathbf{v}(t,X_t^{\alpha_{[0,t]}^*}) + \int_0^t f(\cdots) ds \Big]. \end{aligned}$$

• Expecting DPP for raw set value :

 $\mathbb{V}_{0}(0,x) = \left\{ J(t,\psi;0,x,\alpha^{*}_{[0,t]}) : \text{all } \psi : \mathbb{R} \to \mathbb{R}^{N}, \alpha^{*} \in \mathcal{A}^{N} \\ \psi(x') \in \mathbb{V}_{0}(t,x'), \forall x' \in \mathbb{R}, \quad \alpha^{*}_{[0,t]} \in \mathit{NE}(t,\psi;0,x) \right\}$

 \diamond Subgame on [0,t] with terminal condition ψ :

$$J_i(t,\psi;0,x,\alpha) := \boldsymbol{E}^{0,x} \Big[\psi_i(X_{t_2}^{\alpha}) + \int_0^t f(\cdots) ds \Big]$$

▲御▶ ▲臣▶ ★臣▶

The admissible controls

- The set value is extremely sensitive to admissible controls !
- Open loop controls $\alpha_i = \alpha_i(t, B_{[0,t]})$: DPP fails !
- State dependent closed loop controls $\alpha_i = \alpha_i(t, X_t)$: DPP fails !
- We have to allow for path dependent controls $\alpha_i(t, X_{[0,t]})$
 - ♦ With $\alpha \in \mathcal{A}_{path}^{N}$, the (raw) set value is still state dependent, denoted as $\mathbb{V}_{0,path}(t, x)$.
 - \diamond We have truly path dependent $\alpha^*,$ in particular,

$$\mathbb{V}_{0,state}(t,x)
eq \mathbb{V}_{0,path}(t,x).$$

イロト イヨト イヨト イヨト

The dynamic programming principle

Theorem (Feinstein-Rudloff-Z. 2020)

$$\mathbb{V}_{0}(0,x) = \left\{ J(t,\psi;0,x,\vec{\alpha}^{*}_{[0,t]}) : \alpha^{*} \in NE_{path}(t,\psi;0,x) \\ \psi : C([0,t]) \to \mathbb{R}^{N}, \quad \psi(\mathsf{x}_{[0,t]}) \in \mathbb{V}_{0}(t,\mathsf{x}_{t}) \right\}$$

•
$$J_i(t,\psi;0,x,\vec{\alpha}) := \mathbf{E}^{0,x} \Big[\psi(X_{[0,t]}^{\vec{\alpha}}) + \int_0^t f(\cdots) ds \Big].$$

- The DPP holds when b, f, g are also path dependent
- \bullet The DPP holds for the set value $\mathbb V,$ after obvious modification
- Abreu-Pearce-Stacchetti (1990), Sannikov (2007)

Hamiltonian and PDE

• Introduce

$$h(t,x,z,a) := b(t,x,a)z + f(t,x,a) \in {\rm I\!R}^N$$

• For control problem (N = 1),

$$H(t, x, z) := \sup_{a} h(t, x, z, a),$$
$$\partial_{t}v + \frac{1}{2}\partial_{xx}v + H(t, x, \partial_{x}v) = 0.$$

• For two person zero-sum game (N = 2) under Issacs condition :

$$H_{1}(t, x, z) := \inf_{a_{1}} \sup_{a_{2}} h_{1}(t, x, z, \vec{a}) = \sup_{a_{2}} \inf_{a_{1}} h_{1}(t, x, z, \vec{a}),$$

$$\partial_{t} v_{1} + \frac{1}{2} \partial_{xx} v_{1} + H_{1}(t, x, \partial_{x} v_{1}) = 0,$$

$$H_{2} = -H_{1}, \quad v_{2} = -v_{1}$$

The set valued Hamiltonian $\mathbb H$

• Fix (t, x, z), the mapping $a \mapsto h(t, x, a)$ is a static game, then we may introduce set valued Hamiltonian $\mathbb{H}(t, x, z) \subset \mathbb{R}^N$ naturally.

- For control problem (N = 1), $\mathbb{H}(t, x, z) = \{H(t, x, z)\}$
- For two person zero-sum game (N = 2) :
 ◊ under lssacs condition : 𝔄 = {(H₁, -H₁)}
 ◊ without lssacs condition : 𝔄(t, x, z) = Ø
 - \diamond lsaacs condition $\iff \mathbb{H} \neq \emptyset$ (\mathbb{H}_0 can be empty)

イロン イヨン イヨン イヨン

Vector valued PDE approach for set values (Qiao-Z. 2024+)

• Assume $\mathbb{H}(t, x, z) = \{H(t, x, z)\}$, then $\mathbb{V}(t, x) = \{v^H(t, x)\}$,

$$\partial_t v_i^H + \frac{1}{2} \partial_{xx} v_i^H + H_i(t, x, \partial_x \vec{v}^H) = 0, \quad i = 1, \cdots, N.$$

 \diamond This covers the control problem and zero sum game problem under Issacs condition

• In the general case, roughly speaking (need the ε -approximations)

 $\mathbb{V}(t,x) = \left\{ v^{H}(t,x): \text{ all } H \text{ s.t. } H(t,x,z) \in \mathbb{H}(t,x,z), \forall (t,x,z) \right\}$

 \bullet Hamadene-Lepeltier-Peng(1997), Bensoussan-Frehse(2000) : Showed \supset in terms of \mathbb{V}_0 and \mathbb{H}_0

Set valued PDE approach (Iseri-Z. (???))

$$\sup_{\eta \in \mathcal{T}_{\mathbb{V}}, h \in \mathbb{H}(t, x, \partial_{x} \mathbb{V}(t, x, y) + \eta)} n_{\mathbb{V}} \cdot \left[\partial_{t} \mathbb{V} + \frac{1}{2} \partial_{xx} \mathbb{V} + h\right]$$

$$-\mathrm{tr}\left(\eta^{\top}\partial_{x}\boldsymbol{n}_{\mathbb{V}}\boldsymbol{\sigma}+\frac{1}{2}\partial_{y}\boldsymbol{n}_{\mathbb{V}}\eta\eta^{\top}\right)\boldsymbol{n}_{\mathbb{V}}\Big](\boldsymbol{t},\boldsymbol{x},\boldsymbol{y})=\boldsymbol{0}$$

- y is on the boundary of $\mathbb{V}(t,x)$
- The normal vector $n_{\mathbb{V}}(t, x, y)$ is part of the solution
- η is on the tangent space : $\eta \cdot \textit{n}_{\mathbb{V}} = \textbf{0}$
- $\partial_t \mathbb{V}, \partial_x \mathbb{V}, \partial_{xx} \mathbb{V}$ are appropriately defined set valued derivatives
- In terms of \mathbb{H}_0 , *h* part means

 $h(t, x, \partial_x \mathbb{V}(t, x, y) + \eta, \vec{a}^*)$ over all equilibria \vec{a}^*

Thank you very much for your attention !

Jianfeng ZHANG (USC) Set Values and Efficiency of Games

イロト イヨト イヨト イヨト