Gaussian quasi-likelihood inference
for ergodic Lévy driven SDE

Hiroki Masuda

Graduate School of Mathematical Sciences
University of Tokyo, Japan

EFFI Spring School, Le Mans
May 27 & 28, 2024

Hiroki Masuda (University of Tokyo) GQLF inference for ergodic Lévy driven SDE EFFI Spring School, Le Mans, May 27 & 28, 2024 1/42



Inference for an ergodic Lévy driven stochastic differential equation (SDE)
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AIC and BIC in general: Twin jewels of information criteria

@ AIC and BIC are based on different philosophies, neither is absolutely better than the other:

e AIC is designed for predictive (generalization) performance, while
e BIC is for model-description performance.

How to relatively measure the discrepancy from the model to the (virtual) truth?
£2,n(é2,n) EZ,n(éZn)

Quasi-true

e
N M3 23,11 (éS,n)

T 53,n(é3,n) el,n(él,n)

Avoid over-fitting P
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—20,(0,) + (Complexity/Redundancy regularization)

Goodness-of-fit

Hiroki Masuda (University of Tokyo) GQLF inference for ergodic Lévy driven SDE EFFI Spring School, Le Mans, May 27 & 28, 2024

4/42



Discrete-time setting, as a prelude

@ Location-scale time series:

Yi=a(Yi,0)+c(Yi1))g,  ene,... % (0,1)

@ Gaussian (logarithmic) quasi-likelihood for estimating 6 = («, ):

0 — /H(G) = Z log ¢ (YJ' a(Yj—lva)v C(YJ'—17’Y)2)

Maximize

0, = (&, An) € argmaxt,,

Regularity

e, /(D — 60) S N (0, T(60) " (60)T (6) )

AIC  —20,(d,) + 2 trace (r(én)*lz(én))

= Model assessment: R
BIC —20n(05) + (log n)dimé

“The” continuous-time counterpart of the abovementioned machinery? J
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© Setup and objective



Setup and objective

Objective

e Equally spaced high-frequency sample X, = (th). from data-generating process:

dX; = C(Xt,)dZt + A(Xt)dt (1.1)
ctj”:t-:jh, T, := nh — oo, nhQHO(n—>oo)
e A:R" 5 R¥%and C: R 5 RIQR’
o Z = (Zt)t@h is an r-dimensional non-Gaussian Lévy process independent of Xp.

e Correctly specified statistical models M, , for the unknown (1.1):
dXt = le (Xff’ 'le)dzt + am2 (Xf7 amz)dt

o Scale candidates ci(x,71), .-, cm (X, 7m), Yy € O, CRPm.
o Drift candidates ai(x, a1),..., am(x,am,), @m, € Oq,, CR*m.

Fully explicit two-stage inference based on the Gaussian quasi-likelihood function (GQLF) J
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Setup and objective : Selection s Concluding remarks

Regularity conditions

@ Omitting the model indices, we look at a single model:
dXt = C(Xt_, ’y)dZt + a(Xt, Oé)dt

e Unknown parameter 6 := («,7): v = (%) € ©, CR” and a = (o) € ©o C RP®
o Let 6y = (a0, Y0) € © := O4 X ©, denote the true value of § = (a, 7).
o Scale matrix S(x,7) := c(x,7)%?

© Moments of the driving noise

@ Smoothness and non-degeneracy of the coefficients

© Stability: exponential ergodicity and boundednedss of moments
@ Identifiability
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Setup and objective

de = C()(t_bf7 ’}/)dZt + a(Xt, a)dt

Assumption 1.1 (Moments of driving noise)

E[Z1] =0, E[Z®?] = I,, and E[|Z1]9] < o0 (q > 0).

e For Z = 02w + J, the pure-jump part J satisfies

LT ] _ J Vinis(3) m =3,
EE[J” o ]7 Viripisis(4) + O(h)  m =4,

where, for m >3 and z = (#,. .., z),

) = (b = { [ 2t
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Setup and objective : Selection : Concluding

dXt = C()()g_7 fy)dZt + a()(t7 C\/)dt

Assumption 1.2 (Smoothness and non-degeneracy)

The coefficient (x,0) — (a(x, @), c(x,)) is smooth enough:
e It is globally Lipschitz uniformly in 6 € ©;
@ For some constant Cx; > 0,

maxmax sup (|&,0;a(x, )| + |050,c(x,7)]) S 1+ [x| %’
i<d ik gem

and moreover, sup /\min{S(x,ﬂy)}*1 <1+ \X|C0 for some constant Cy > 0.
¥EO,
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Setup and objective : Selection s Concluding remarks

dXt = C()(tf7 'y)dZt + a(Xt, Oé)dt

Assumption 1.3 (Stability)

There exists a probability measure m = mp, s.t. for every q > 0 there exists a positive constant a s.t.

sup e®* sup
teR, fi|f|<g

[P an - | f(y)w(dy)\ <glx) xeRY,

where g(x) := 1+ ||x||9. Further, sup E[|X¢|?] < oo for every g > 0,
Ry

@ Several sufficient conditions are available: among others,
Meyn-Tweedie-theory based [Masuda, 2007]

Local Doeblin condition based [Kulik, 2009]

Monograph [Kulik, 2018] with systematic and detailed descriptions
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Setup and objective

dXt = C()(t_bf7 ’}/)dZt + a(Xt, a)dt

Assumption 1.4 (ldentifiability)

There exist positive constants x~ and X such that for every v and «,

1S(x,7)]
15(x,70)

—% / 572,70 [(alx. @) — a(x,20))°%] (dk) < ~xala — aol?

1
=5 [ {inace (St 2(x,20) = ) + g br(a) <~ =l

e Different parameters should not lead to the same data-generating £(X).

@ Essential in the argmax argument.
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e Estimation: GQMLE

Advantage of stepwise estimation of the coefficients: scale — trend

dXt = C(Xt_, ’Y)dZt + a(Xt, Ol)dt




Estimation Selection 1S Concluding remarks

Statistical problem, roughly

Find a resonable alternative to the unknown genuine log-likelihood, formally given by

n
log pn( Xy, .-+ s Xt,3 0) = Z log Ph(Xt,-,pth; 0)
j=1

e 4 ,C(Xt.] ‘Xt]—l) ~ ??
AjX = th - th71
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Estimation

Formulation of two-stage Gaussian quasi-likelihood estimation

o Write A;Y =Yy, — Yy, and f;_1(0) = f(X;_,,0).
@ The Euler approximation for dX; = ¢(X;—,v)dZ; + a(X:, a)dt under Py is given by
Xy~ Xy, + aj-1(a)h + G-1(7)A;Z.
@ Taking the small-time Gaussian approximation (incorrect!):
L(Xy| Xy, = x) = Ng (x + a(x, a)h, hS(x, 7))
into account, we are led to the joint GQLF H,(6) = H,(X,, 0):

Ha(0) := Y log ¢a (Xy; Xy, + aj—1(c)h, hS;_1(7))

j=1

=13 (loglomts ()l + 3540 [ — haa@)™] ). (23)

j=1
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o H,(0) = Hj n(y) + Ha, n(6), where

HL"(’Y) = Z |Og ¢d (th; thfn th—l(’V)) ’
j=1

n

20(0) = 3 (SO AX. -a(@)] - 55740) [373 )]

j=1
have two different resolutions: n=*Hj ,(v) and T, 'Hj ,(#) have proper LLN limits.
@ The following two-stage estimation strategy is natural (Gaussian quasi-MLE: GQMLE):
@ Estimate v by 4, € argmax_ Hi »(7);
@ Estimate o by &, € argmax,Hb>,,(c) where, with a slight abuse of notation:

HQ_],,(O[) = Hz,n(a7 "?n)
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Setup and objective Estimation

Theorem 2.1 (Mighty convergence of the GQMLE [Eguchi and Masuda, 2024])

Under Assumptions 1.1, 1.2, 1.3, and 1.4, we have the convergence of moments for any continuous
function f : RP — R of at most polynomial growth:

E £ (VTal0—00))] = [ F(0)o(ui0. V(60))d

with V (6o) = T(60) "1 (00)T (6o)~* explicitly given, hence in particular:

o 0y = /To(fs — 60) £ N, (0, V(6o));
e E[d,] — 0, E[2%%] — V/(6o), and also sup E[|0,|%] < oo for every q > 0.

Further, it is possible to construct an explicit consistent estimator \7,, LN V(6o), so that

Vo2 /T (0, — 00) £ N, 0, 1,).
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Estimation

Related remarks

e Dividing estimation stages does not change asymptotic covariance.

Comparing Theorem 2.1 and [Masuda, 2013, Theorem 2.7] shows that the joint and stepwise
GQMLE have the same asymptotic distribution.

Ha(0) =Y log ¢a (Xy; Xy, + aj-1(a)h, hS;_1(7)) = Hun(y) + Ha.n(6),
j=1

Hyn(7) =Y _logda (X Xy_,, hSi-1(7)) ,
j=1

n

Baal®) = Y- (S4B 31(0)] - 5540) a5 (0)] )

j=t
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e Simpler form for the univariate case (d = r = 1) for V() = I'(6o) "1 (6o)I (Ao) %

_( Talbo) ~ Way(fo) i
£ = () Wl ) o) = dia(ra )10

00 = [ () st o= [ ()

Wa ~(00) = %V(3)/@VS);M(X, o) (dx),

L [ (850 F )
W o) = ) [ (Z ) o) = 20 ).

e Multivariate case involves many multil-linear forms, notationally messy.
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@ The Studentization R .
Vo2 /T8, — 0) = N,(0, 1,).

automatically distinguish “diffusion or Lévy with jumps”.

The well-known fact D, (8, — 6o) N N,(0,T(fo) 1) with the different (partly faster) rate of
convergence D, := diag(v/ Talp,,/nlp. ), see [Kessler, 1997] and [Uchida and Yoshida, 2012]:

Wf(e — o) = (\/»VD ) w(00 — 00),
VT VDt 2 T (60)Y2,

resulting in
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@ Next section: Relative model comparison through AIC and BIC philosophies.

Xi+ar — Xt + (Trend)dt + (Scale) - d(Noise)

o AA J’v‘vu’f%ﬂw
jg; ' \ ,4' \ _Pf h W!Ju
3" NA N%WN Wﬁlwl l{M ”Mh{j

31 1y ¥

Scale Trend (Drift)

Estimation - Selection Estimation - Selection

Hiroki Masuda (University of Tokyo) GQLF inference for ergodic Lévy driven SDE EFFI Spring School, Le Mans, May 27 & 28, 2024



Estimation

Summary: GQMLE for ergodic Lévy SDE

Xirar « Xi + (Trend)dt + (Scale) - d(Noise)

dXe = C(X¢-)dZ: + A(X:)dt -] po™
M Hf" i Mw“h M’

m ,,...Mm W

T T
00 05 10 5 20
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05

00
L

t'=t;=jh, Tno:=nh— oo, nh*>—0(n— o)

Time

Scale Trend (Drift)
th I~ thfl + aj_l(a)h +¢i—1 (’y)AjZ Estimation - Selection Estimation - Selection

Ha(0) = > log ¢ (Xe; Xy, + aj—1(a)h, hSj_1(7)) = Hyn(7) + Ha,n(6)
j=1

Hiy,o(y Zlogd)d (X Xyy1r hSj—1(7)) - E[f (\/f(énfeo))] /f( )é(u; 0, V(6o))du

Jj=1
EROEDY (sj:ﬁm 85X, 3a(0)] - 55750) [a7% (@) Vo2 To(Bn — B) 5 No(0, 1)
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9 Selection: GQAIC and GQBIC

o Correctly specified statistical models M, m, (m1 < My; my < Ms):

dXt — le (Xt—a 'le)dzt + amz (Xt; amz)dt?
1 P~ Po
e.g. dXt = exp (2 ;’YkSk(Xt_)> dZt + ; a/a[(Xt_) dt

@ Akaike's AIC type and Schwarz’'s BIC type statistics for ergodic Lévy SDE?
o Stepwise selection strategy of the coefficients would be essential: scale — trend.




Selection

AIC and BIC in general: Twin jewels of information criteria (reprint)

@ AIC and BIC are based on different philosophies, neither is absolutely better than the other:

e AIC is designed for predictive (generalization) performance, while
e BIC is for model-description performance.

How to relatively measure the discrepancy from the model to the (virtual) truth?
£2,n(é2,n) EZ,n(éZn)

Quasi-true

e
N M3 23,11 (éS,n)

T 53,n(é3,n) el,n(él,n)

Avoid over-fitting P
——

—20,(0,) + (Complexity/Redundancy regularization)

Goodness-of-fit
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Selection

Preliminary general remarks on AIC paradigm

True distribution g(x)u(x) of a sample X, <«  Statistical model {f(-;0): 6 € ©} wrt p.
Estimate g by f,(-) = f(-;8,) for some 0, = 0,(X,).
Minimize the Kullback-Leibler divergence

D(fig) = (/glog (i) gdu)

It amounts to minimizing the relative entropy &(f,; g) where £(f; g) := — J(log f)gdp.

fo=fa

As g is unknown, we substitute the empirical counterpart £(#,; x,) for £(f; g).

Then, by removing the randomness by integrating out X, with respect to g, it is desired to derive
a computable corrector b, such that

E [5(ﬂ;g) - (5(fn; dx.) + b)} —o(1), n— oo (3.1)

e Put simply: derivation of AIC amounts to managing this expectation.
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@ The routine way is to first compute the “reading” term(s) of
by = E [£(Fri g) — £(Faiox,)]
and then construct an asymptotically unbiased estimator b, = b,(X,), i.e. E[b, —b,] = o(1).

o For models regular enough, we very often reach

b, = dim(Unknown parameters).

The above strategy can be traced (formally makes sense)
@ whatever the probabilistic structure of £(X},) is, and
@ when the model {f(;0) : 6 € ©} is misspecified.

What's essential therein is that we can find a suitable corrector b,, satisfying the property (3.1).
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Selection

Approximation of bias in joint case?

@ Turning back to our setup, we keep considering the SDE model (index (my, my) omitted):
dX; = c(Xe—,v)dZ: + a( Xy, a)dt.
o If we try to evaluate the bias directly for the joint GQMLE H,(0), as
b, = E [Hn(én(xn); X,) - E [Hn(én(xn); X)H (X, is an indep. copy of X,)
= EE [ (Ha(0) — Ha(00)) — (a(Bn) — Fn(60))]

we need to look at the identity:

~ 1
Hn(en) - Hn(QO) = HLn(ﬁ/n) - Hl,n('yo) + HZ,n(&naﬁ’n) - H27n(040770) = EQLn(’VO) + Q2,n(90)-
(3.2)

o Importantly, both Q1,n(70) and Q2,s(6o) are the asymptotically non-trivial;
o while H,(60,) — H,(6o) = Op(1) in case of diffusions.

Hiroki Masuda (University of Tokyo) GQLF inference for ergodic Lévy driven SDE EFFI Spring School, Le Mans, May 27 & 28, 2024 24 /42



o Let b, := (du,n, by,n) wWhere iy n :=+/Tp(n —70) and dun =/ Tp(&n — ao).
@ Roughly, under suitable regularity conditions we may write

,0,) ~ Ha(00) = 3 1 { (505000 1634 b 742

=0p(1) (Fop(1))

for 9K - t
or 9k -components

en T,Tk/z — 0 only for k large enough (will lead to messy and unpleasant terms!).
o In case of diffusions, H,(6,) — H,(6o) itself is of the log-likelihood ratio type character.

@ The mixed-rates structure necessitates the higher-order derivatives of H,, in the direct
evaluation of b, based on the joint GQLF H,,(8), resulting in rather complicated expressions.

We can bypass this issue through the two-stage GQLF Hj ,(v) and Hy ,(«): in other words, we're
going to separately look at the two terms Q; ,(70) and Q> ,(6o) in (3.2) in this order.

~ 1
Hn(en) - Hn(HO)ZQLn(IYO) = Q2,n(90)-
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Selection

Stepwise bias corrections

@ Scale: Q1 ,(7o0)-part AlC-bias (w.r.t. 7y) is

by,n 1= E [Fl1o(30(X); Xn) — E [, (3n(X0): X0)]
= trace {T,(10) W, (30)} + O(T; /2). (3:3)
with both 'y (7o) and W, (7o) being explicit: plugging-in their estimates,
GQAIC, , == —2H »(5n) + %trace (f;}, Ww,> . (3.4)

o The particular case of d = r = 1:

.1 . 1 & AX N\, .
GQAIC, , = —2Hy,0(9n) + 72a(4)py, Dn(4) = = — = v(4):= | z'v(dz).
’ h To <= \g-1(9n)

A finite-sample correction is possible to make the formula consistent with the diffusion case.
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@ Having the estimate 9, in hand, we proceed to the bias evaluation for the drift coefficient.

@ Drift: O ,(6o)-part AlC-bias (w.r.t. «) turned out to be
ba,n =E [HQ,n(&na%n) - E [HZn(é\‘naﬁ/n)}}
= Pa + bA,n + 0(1)7 (35)

with the term by , being common to all the drift-coefficient candidate, so that we may and do
ignore by , in relative model comparison, for it is common to all the candidates:

GQAIC, , := —2H3 ,(&n) + 2pa- (3.6)

Theorem 3.1 (GQAIC formula for ergodic Lévy SDE: [Eguchi and Masuda, 2024])

S ~

Suppose additionally that E [trace (F,Y}7 W%,,)} — trace {T,(70) "' W, (70)}. Then, the

approximation (3.3) and (3.5) hold.
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e Correctly specified statistical models M, m, (M1 < My; my < Ms):

dXe = Cmy (Xe—, Yy )dZe + am, (Xe; am, ) dt.

Hl,n(ry) = Z |Og ¢d (thy thfla hsj—l(’}/)) )
Jj=1

Ha ()= (sj—_ﬁw) (X, 37 1(0)] — 2575() [a?fl(a)})

Jj=1

Our proposal for how to select the scale coefficient through AlIC

2 A ~
© FIRST select the scale by (3.4):  GQAIC, , = —2Hix(4,) +  trace (r;}n W%,,)
@ THEN select the drift by (3.6):  GQAIC,, := —2H, »(&,) + 2pa-

e For the GQAIC, the prob. of “underestimating model” goes to 0.

Hiroki Masuda (University of Tokyo) GQLF inference for ergodic Lévy driven SDE EFFI Spring School, Le Mans, May 27 & 28, 2024 28 /42



Setup and objective ul Selection

Remark 3.2 (GQAIC for diffusion)
dXy = c(Xe—, v)dwy + a(X;, )dt

@ GQAIC become —2H; ,(%n) + 2p, for scale, and —2Hj (&) + 2pq for drift.
@ Moreover, in case of the joint estimation through the GQLF H,(f) of (2.1), the GQAIC is

N

—2H,(0n) + 2(Pa + Py);

the same form as in the CIC of [Uchida, 2010], the contrast information criterion.

@ The source of this essential difference is that, for diffusions, the statistical random fields is jointly
LAQ.
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Selection

Preliminary remarks on BIC paradigm

dXt = C(Xt_, ")/)dZt + a()(t7 O[)dt

BIC methodology is to select the model that approximately minimizes the minus logarithmic
model evidence defined to be, with m(#) denoting the joint prior density of («, ),

—tog ( [ exo(in,(0))x(0)a0)

for the joint GQLF. As in the GQAIC case, we formulate a stepwise procedure.

We keep using the two-stage GQLFs H;y ,(vy) and Hy p(a) = Hy n(c, Fn)-
In addition, we consider the prior densities 71(7y) and ma(«) for o and +, respectively.

o We assume that both 7; and m are continuous and bounded in 6A, and 6, respectively, and
moreover that m1(y0) > 0 and m2(ag) > 0.

We additionally assume that there exists a constant ¢; € (0,1) for which T,, 2 n“.
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Selection

Stepwise stochastic expansions

© Scale: Free energy at the inverse temperature b > 0, defined through the negative
normalized logarithmic partition function:

Fua(b) = —nib log (/@ exp{b Hl,n(v)}m(v)dw> .

e The terminology “normalized” means that §1,,(b) has non-trivial limit (in probability) for each
b > 0; the normalized marginal quasi-log likelihood corresponds to §1,,(1).

e The classical BIC methodology is based on a stochastic expansion of F1,,(1);
see [Eguchi and Masuda, 2018] and the references therein.

@ §1.,(1) quantifies the minus model evidence for the Q1 ,(70)-part: a smaller §1 ,(1) is better in
model description.
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Selection

L

gl,n(b) = nb

log </e exp{leyn('y)}m('y)d'y> .

Theorem 3.3 (Scale-GQBIC formula for ergodic Lévy SDE: [Eguchi and Masuda, 2024])

TS 1
B1(1) =~ Huo(3n) + B2 togn + 0p (3. (37)
Fin(h) = —1Hy (50) + PL log T+ 0, [ — (3.8)
1,n -, 1,n\Vn 27T, og I'n p T, : .

@ The first one (3.7) was previously given in [Eguchi and Uehara, 2021], based on which the
GQBIC for the scale was defined to be —2H; ,(%,) + p- log n.

e For the model-selection consistency to be in force, we propose to adopt (3.8):

GQBIC, , = —2H 4(%,) + %7 log T (3.9)
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@ Drift: We can directly look at the normalized marginal quasi-log likelihood

Ban =200 =~ tog | “ exp{Ea ()} mae)da )

Theorem 3.4 (Drift-GQBIC formula for ergodic Lévy SDE: [Eguchi and Masuda, 2024])

1 1
Ban(1) = —Hon(dn) + 2T (T > .

e Ignoring O,(T, ) of §a,, (as in [Eguchi and Masuda, 2018]), we introduce the second GQBIC:

GQBICQ,n =-2 H2,n(é\‘n) + pa log Tp. (3'10)
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o Correctly specified statistical models Mp, m, (M1 < My; my < Ma):

0X, = Em(Xe s Y ) 820 + 3 (Xe, ) .

Hi,n(v) = Z log g (Xyi Xy hSj-1(7)) »
Baal0) = Y- (SO 18X, 3ala)] - 25700 [373 )] )

j=1

Our proposal for how to select the scale coefficient through BIC

© FIRST select the scale by (3.9):  GQBIC, , = —2Hy »(5s) + pf log T,.
© THEN select the drift by (3.10):  GQBIC, , = —2Hy (&n) + pa log Tp.

o The selection consistency follows as in [Eguchi and Masuda, 2018] or [Eguchi and Masuda, 2019].
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@ Simulations



Simulations

Simulation design

3

2 47, te[0,T,), Xo=o.
1+x2°t €Tl X

1
dXt - 7§Xtdt +

@ Three different noises:

(i) Normal inverse Gaussian noise £(Z;) = NIG(10,0,10t,0),
(i) Normal bilateral gamma noise £(Z;) = bGamma(t, /2, t,/2),
(iii) Skewed NIG noise £(Z;) = NIG (2,2, 2t,—2¢).

@ We use YUIMA R package [Brouste et al., 2014] for generating data.

@ Monte Carlo trials are based on 1000 independent sample paths, done for
(hn, T,) = (0.01,10), (0.005, 10), (0.01, 50), and (0.005, 50),

hence in each case, n = 1000, 2000, 5000, and 10000.
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Simulations

3

————dZ tel0, T, Xo=0.
]-+Xt27 ts 6[7 n]; 0

1
dXt = —EXtdt +

e Candidate scale (Scale) and drift (Drift) coefficients:

@ Scalel ICl(X, 7/1) =M o Drift1: al(X,Cll) = —Q1
e Scale 2:q(x,72) = 1 -7—2)(2 o Drift 2: ay(x, ) = —anx

N ) o Drift 3: as(x,a3) = —az1x — aszp
e Scale 3 :c3(x,7v3) = %11_’_72?22)(

2
o Scale 4 :ci(x,74) = Y41+ ?j_x er 4,3X
X

@ Then, the optimal (minimal true) model consists of Scale 2 and Drift 2 with (72, a2) = (3, 3).
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Setup and objective stimation Selection Simulations Concluding r

@ The proposed information criteria (with non-essential modification for GQAIC, ,):

CICl,n = 72H1,n("?n) = 2pw, CIC27n = 72H2,,,(6zn) =+ 2po¢7

(Calculated just for comparison)

1 </ Ax \* 4 2\*
— _ 2 = J _
GQAIC, , = —2Hi,0(9n) + py {th ; (cﬂ(%)) < Tn Jz; (q 1(5n) > ) } ’

GQAICz’n = _2H2,n(&n) + 2po¢7
GQBICY , = —2Hy0(70) + pylogn,  QBIC, , = —2Hy,(3,) + 2 > log T,

QBIC, , = —2Hy,,(&n) + pa log Ty.
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Simulations

Model-selection frequencies in (i) £(Z;) = NIG(10,0,10t,0)

cic T, hn Scale 1 Scale 2* Scale 3 Scale 4 QBIC Ta hn Scale 1 Scale 2* Scale 3 Scale 4
10 0.01 Drift 1 0 1 0 0 10 0.01 Drift 1 0 1 0 0
(n=1000) Drift 2* 0 536 124 199 (n=1000) Drift 2* 0 861 0 0
Drift 3 0 74 27 39 Drift 3 0 138 0 0
10 0.005 Drift 1 0 0 1 0 10 0.005 Drift 1 0 1 0 0
(n=12000) Drift 2* 0 458 110 285 (n=12000) Drift 2* 0 866 0 0
Drift 3 0 67 25 54 Drift 3 0 133 0 0
50 0.01 Drift 1 0 0 0 0 50 0.01 Drift 1 0 0 0 0
(n=5000) Drift 2* 0 466 202 231 (n=5000) Drift 2 0 965 0 0
Drift 3 0 51 28 32 Drift 3 0 35 0 0
50  0.005 Drift 1 0 0 0 0 50 0.005 Drift1 0 0 0 0
(n=10000) Drift 2* 0 402 150 352 (n=10000)  Drift 2* 0 964 0 0
Drift 3 0 51 13 32 Drift 3 0 36 0 0
GQAIC T, hn Scale 1 Scale 2*  Scale 3 Scale 4 GQBICF T, hy, Scale 1 Scale 2° Scale3 Scale 4
10 0.01 Drift 1 0 1 0 0 10 0.01 Drift 1 0 0 0
(n=1000) Drift 2* 0 714 77 64 (n=1000) Drift 2* 0 788 49 30
Drift 3 0 110 20 14 Drift 3 0 119 7 6

10 0.005 Drift 1 0 1 0 0 10 0.005 Drift 1 0 1 0
(n=12000) Drift 2* 0 733 62 56 (n=12000) Drift 2* 0 759 69 45
Drift 3 0 117 17 14 Drift 3 0 107 9 10
50 0.01 Drift 1 0 0 0 0 50 0.01 Drift 1 0 0 0 0
(n=5000) Drift 2* 0 713 122 64 (n=15000) Drift 2* 0 882 64 19
Drift 3 0 83 11 7 Drift 3 0 32 2 1
50 0.005 Drift 1 0 0 0 0 50 0.005 Drift 1 0 0 0 0
(n=10000) Drift 2* 0 765 79 59 (n=10000) Drift 2* 0 862 68 34
Drift 3 0 88 5 4 Drift 3 0 32 2 2
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Simulations

selection frequencies in (ii) £(Z;) = bGamma(t,/2,t,/2)

cic T, hn Scale 1 Scale 2* Scale 3 Scale 4 QBIC Ta hn Scale 1 Scale 2* Scale 3 Scale 4
10 0.01 Drift 1 0 0 0 9 10 0.01 Drift 1 3 0 0 1
(n=1000) Drift 2* 5 106 26 767 (n=1000) Drift 2* 142 700 2 36
Drift 3 0 10 1 76 Drift 3 14 101 0 1

10 0.005 Drift 1 0 0 0 9 10 0.005 Drift 1 3 0 0 2
(n=12000) Drift 2* 2 83 24 793 (n=12000) Drift 2* 142 700 1 37
Drift 3 0 6 2 81 Drift 3 14 100 0 1

50 0.01 Drift 1 0 0 0 0 50 0.01 Drift 1 0 0 0 0
(n=5000) Drift 2* 2 85 47 782 (n=5000) Drift 2 22 890 9 22
Drift 3 0 6 4 74 Drift 3 3 33 0 1

50  0.005 Drift 1 0 0 0 0 50 0.005 Drift1 0 0 0 0
(n=10000) Drift 2* 0 68 25 826 (n=10000)  Drift 2* 38 894 6 23
Drift 3 0 4 3 74 Drift 3 3 35 0 1

GQAIC T, hn Scale 1 Scale 2*  Scale 3 Scale 4 GQBICF T, hy, Scale 1 Scale 2° Scale3 Scale 4
10 0.01 Drift 1 1 0 0 4 10 0.01 Drift 1 0 0 0 10
(n=1000) Drift 2* 97 591 10 186 (n=1000) Drift 2* 15 189 32 685
Drift 3 15 86 0 10 Drift 3 2 14 2 51

10 0.005 Drift 1 1 0 0 5 10 0.005 Drift 1 0 0 0 10
(n=2000) Drift 2* 99 584 7 191 (n=12000) Drift 2* 10 130 35 743
Drift 3 15 88 0 10 Drift 3 1 12 2 57

50 0.01 Drift 1 0 0 0 0 50 0.01 Drift 1 0 0 0 0
(n=5000) Drift 2* 29 741 36 100 (n=15000) Drift 2* 3 200 84 686
Drift 3 4 73 5 12 Drift 3 0 4 2 21

50 0.005 Drift 1 0 0 0 0 50 0.005 Drift 1 0 0 0 0
(n=10000) Drift 2* 27 747 27 104 (n=10000) Drift 2* 1 159 49 763
Drift 3 4 74 5 12 Drift 3 0 3 2 23
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Model-selection frequencies in (iii

Simulations

cic T, hn Scale 1 Scale 2* Scale 3 Scale 4 QBIC Ta hn Scale 1 Scale 2* Scale 3 Scale 4
10 0.01 Drift 1 0 0 0 0 10 0.01 Drift 1 0 0 0 0
(n=1000) Drift 2* 0 128 52 600 (n=1000) Drift 2* 24 798 5 5
Drift 3 0 30 30 160 Drift 3 35 133 0 0

10 0.005 Drift 1 0 0 0 1 10 0.005 Drift 1 0 0 0 0
(n=12000) Drift 2* 0 88 37 653 (n=12000) Drift 2* 25 795 4 4
Drift 3 0 25 16 180 Drift 3 37 135 0 0

50 0.01 Drift 1 0 0 0 0 50 0.01 Drift 1 0 0 0 0
(n=5000) Drift 2* 0 88 75 731 (n=5000) Drift 2 0 243 28 0
Drift 3 0 12 4 9 Drift 3 0 28 1 0

50  0.005 Drift 1 0 0 0 0 50 0.005 Drift1 0 0 0 0
(n=10000) Drift 2* 0 70 39 785 (n=10000)  Drift 2* 0 957 16 0
Drift 3 0 6 1 99 Drift 3 0 26 1 0

GQAIC T, hn Scale 1 Scale 2*  Scale 3 Scale 4 GQBICF T, hy, Scale 1 Scale 2° Scale3 Scale 4
10 0.01 Drift 1 0 0 0 0 10 0.01 Drift 1 0 0 0 0
(n=1000) Drift 2* 18 589 33 155 (n=1000) Drift 2* 0 264 64 477
Drift 3 32 125 33 15 Drift 3 5 37 45 108

10 0.005 Drift 1 0 0 0 1 10 0.005 Drift 1 0 0 0 1
(n=2000) Drift 2* 15 602 30 149 (n=12000) Drift 2* 0 181 48 565
Drift 3 32 122 32 17 Drift 3 2 35 29 139

50 0.01 Drift 1 0 0 0 0 50 0.01 Drift 1 0 0 0 0
(n=5000) Drift 2* 0 672 102 122 (n=15000) Drift 2* 0 210 136 619
Drift 3 0 80 8 16 Drift 3 0 7 1 27

50 0.005 Drift 1 0 0 0 0 50 0.005 Drift 1 0 0 0 0
(n=10000) Drift 2* 0 710 77 110 (n=10000) Drift 2* 0 166 9 708
Drift 3 0 78 4 21 Drift 3 0 4 1 25
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Simulations

YUIMA package

e ASSESSMENT
Statistical Inference
* Mean squared error analysis

O

+ Goodness-of-fit testing

Stochastic Analysis + Residual analysis

- ormatenarier,.. YUIMA

L t Th
imit Theorems ANALYSIS & developers

YUIMA &

ASYMPTOTICS e
Simulator 7

* Parameter estimation

* Quantitative confidence set

Optimization/Algorithm + Prediction uncertainty, .

00000

@ Documents: [Brouste et al., 2014], [lacus and Yoshida, 2018], ...

« Sometimes intuitive

* ideally simple enough and practical

MODEL BUILDING

« Randomly perturbed dynamical system
« Linear and/or non-linear

* Noise character, ...

@ Demonstrated also by e.g. Quant Education: https://www.youtube.com/watch?v=trWzgLj20XU

@ https://r-forge.r-project.org/projects/yuima/
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Estimation Selection Simulations Concluding remarks

Summary: Noise character does significantly matter

@ Inference based on the two-stage Gaussian quasi-likelihood:
True data-generating process <—  Statistical model My, m, (M1 < My, my < Mp)

dXt = C(Xt_)dZt + A(Xt)dt «— dXt = am, (Xta amz)dt + Cm, (Xt_, ’}/ml)dzt
e Estimation of 6., m, = (am2~7m1) by GQMLE:

E [f( To(f — /f (1;0, V(60))du, V> To(Bn — 60) S5 No(0, ).

Select M, , i, , for GQXIC type relative model selection (X<A,B)

{1} = argmln GQXIC1 o, {rn,,} = argmin GQXICQ’TEWL") :
me

2 s
GQAIC, , = ~2Hy n(3n) + 7 trace ((ThWon),  GQAIC,, = ~2Han(Gn) + 2P0,

GQBIC, , = —2H +(7.) + %7 log T, GQBIC,,, = —2Ha o(&n) + pa log Th.
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Asymptotic behaviors of the GQAIC and GQBIC

Preliminary observations |

@ Assume that 0 < {90ty < My and 0 < {901, < M,, where #99%; and §991, denote the numbers of
elements of My and My, respectively, with
My == {my € {1,..., My} : there exists a ym, 0 € ©,,, such that cp, (-, Ym 0) = (1)},
My = {mp € {1,..., My} : there exists a am, 0 € Oa,, such that am,(, am,0) = A()}-

e The candidate coefficients ci,...,cm, and a1, ..., am, contain both correctly specified coefficients
and misspecified coefficients.
e See [Uehara, 2019] for asymptotics for misspecified-coefficient case.

Hiroki Masuda (University of Tokyo) GQLF inference for ergodic Lévy driven SDE EFFI Spring School, Le Mans, May 27 & 28, 2024 47 /42



Asymptotic behaviors of the GQAIC and GQBIC

Preliminary observations |l

@ Using the GQAIC, the stepwise model comparison is performed as follows.

(i) We compute GQAIC, , for each candidate scale coefficient, say GQAIC1 T GQAIC1 g
select the best scale coefficient City,, having the minimum GQAIC,; ,-value:

{rin,n} = argmin GQAIC&?}).

1<m <M

(ii) Under the result of (i), we choose the best drift coefficient with index iz, such that

{2,n} = argmin GQAIC(mQ‘m1 5
1<my<M,
where GQAIC;’Z‘M’") corresponds to (3.6) with cm, , and Y ,.n.

@ The total number of comparisons in this procedure is M; + M,, and we can obtain the model
Mz, .., @S the final best model among the candidates.

@ When we use GQBIC for model comparison, the best model is selected by a similar procedure.
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Asymptotic behaviors of the GQAIC and GQBIC

Preliminary observations Il

@ Let the functions Hg’;’j) and Hg'jflml) denote Hj , and Hy , in each candidate model My, m,,
respectively. Then, we have

1 (m 1 _ m
~H{Y (m) B 5 / {trace (S(x,ym) T S(x)) + log S e vm )|} w(dx) =t B (3, ),

where §(x) = C(x)®2. We assume that the optimal scale parameter 7, and scale index set 2}
are respectively defined as

(¥} = argmax,, B (4m). ] = argmindim(®,, )
myeNy

@ For any my € My, V5, = Yy 0-
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Asymptotic behaviors of the GQAIC and GQBIC

Preliminary observations IV

e Next, for any fixed my € {1,..., My},

1 my|m ' — * 2 my|m
T HE ™ am) B =5 [ ST [ (am (s am:) =AY () = HEE ™ ()
n

and assume that the optimal drift parameter o, is given by maximizing H(mz‘ml)

{ap,} = argmax, HYE™ (o).

e When my is included in My, o, = am, 0.

@ We also suppose that the drift index set 95 is defined as

M5 = argmindim(©,,, ).
my €M, :

@ From the assumptions and definitions of H ) and H; mz|f711) , My = argmax,, H (7,,, ) and
M, = argmax, H(mzlml)(amz) hold.
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Asymptotic behaviors of the GQAIC and GQBIC

Preliminary observations V

o Let ©,, X O, C R x RP*2 and O, X O, C RP% x RP*2 be the parameter space
associated with model M, ; and M;, ;. respectively.

o If p,, < py, and there exists a matrix F; € R P with F'Fy = I, xp-, s well as a

H(lil,z(’wl) = ]I-]I(ljl)(Flfy,-1 + a) for all v, € ©,, , we say ©,, is nested in ©,, .

,n

@ It is defined in a similar manner that 6% is nested in @%.

o Let GQBIC{™ and GQBIC]'T" denote the GQBIC, , and GQBIC! , of the my-th candidate

scale coefficient, respectively. Also, let GQBICnglml’") correspond to (3.10) associated with cp, ,

and Ym, ,.n-
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Asymptotic behaviors of the GQAIC and GQBIC

GQAIC is asymptotically weighed chi-square distributed

@ Somewhat complicated description: [Eguchi and Masuda, 2024, Theorem 5]
e Summary

o The probability of relative selection is asymptotically characterized by the non-central chi-squared
distribution; in general, this happens when an estimator under consideration is asymptotically

normally distributed with the asymptotic covariance matrix being of the sandwich form (see
[Kent, 1982]).

o Further, the probability that GQAIC chooses the misspecified coefficients tends to 0 as n — oo.
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Asymptotic behaviors of the GQAIC and GQBIC

GQBIC has selection consistency |

Theorem 6.1

Suppose that the assumptions of Theorem 3.1 hold for all candidate coefficients which are included in
IMy. We also assume that index mj satisfies my € M.

O Let m € Mi\{mi}. If O, . is nested in ©,, , then
1

lim P (GQBIO” m) S GQBICL}S;’“)) —1

n— oo

Q@ Ifmye{l,...,Mi}\Iy, then

lim P (GQBIC‘j ) < GQBICH™ ) ~ 1.
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Asymptotic behaviors of the GQAIC and GQBIC

GQBIC has selection consistency |l

Theorem 6.2

Suppose that the assumptions of Theorem 3.1 hold for all candidate coefficients which are included in
My and M,. We also assume that indexes mi and mj satisfy m;y € M7 and m; € M, respectively.

(1) If@vml* is nested in ©,,  for my € Mi\{my}, orif my € {1,..., Mi}\OMy, then

lim P(GQBIC < GQBIC{™ ) 1.

n— o0

(2] If@am; is nested in ©,,,, for my € M\{m3}, or if my € {1,..., Mp}\My, then

im P (GQBICYE ™ < GQBICY!™) =1

n— oo

@ Theorem 6.1.1 shows that, when comparing correctly specified models, the probability that
GQBIC?L" selects a larger model tends to 1. Moreover, Theorem 6.2 means that the GQBIC
proposed by (3.9) and (3.10) has the model selection consistency.
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