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Motivating example: Tornado loss data

The data (NOAA Storm Prediction Center) contains, for each tornado
in the eastern US between 1 January 2010 and 31 December 2019:

The associated monetary loss,

Starting and ending latitude and longitude,

Length and width of the area traveled over.

We consider the loss per surface unit Y = loss/(length×width), with
covariate X ∈ R2 being the average latitude and longitude of a tornado.

This results in a sample (Xt ,Yt) of size n ≈ 6,000, including the 2011
Joplin, Missouri, tornado which caused a total loss of 2.8 billion USD.

Motivating question

What are the financial consequences of a high-impact tornado as a
function of the geographical area it hits?
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Tornado loss data - Exploratory analysis

(a) Losses per squared−yard
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Figure: Tornado loss data. Left: Data across the eastern half of the US, right:
Local number of observations.
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Tornado loss data - State-by-state analysis

(e) Mean by state
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(f) Tail risk (quantile) by state
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Figure: Tornado loss data. Left: Unconditional statewide estimation, using the
sample average, right: Using the bias-reduced extreme quantile estimator of
Gomes and Pestana (2007) at level 0.995.
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Such region-by-region maps seem to be standard in insurance.

One major issue is that they are inherently non-smooth geographically:
there are, among others, sharp jumps along the borders of

The states in the Midwest,

The states in New England,

Florida-Georgia-South Carolina.

Inference, in the form of confidence intervals, is not obvious in this
setting where data are dependent in time and nonstationary in space.
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Context of the talk: conditional risk assessment

The (risk) variable Y is recorded alongside a random covariate X ∈ Rp:

Y = individual stock price, X = stock market index ∈ R,

Y = loss variable following a climate event, X = latitude and
longitude ∈ R2.

No assumption is made on the link between Y and X , and we seek
estimators of extreme quantiles and/or expectiles of Y given X .

⇒ The estimation approach has to be nonparametric.

Difficulty: Quantiles and expectiles are not expectations. Otherwise,
one would immediately think about nonparametric regression!
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Two key (known) observations provide the basis for this work.

The expectile of Y is in fact a quantile, of the c.d.f. E defined as

E (y) = 1− E((Y − y)1l{Y > y})
2E((Y − y)1l{Y > y}) + y − E(Y )

.

This function E is readily estimated.

If q is the quantile function related to F then qτ ≤ t ⇔ τ ≤ F (t).

Both expectile and quantile estimation fall under the umbrella of
quantile estimation (first point)...

... and therefore under the umbrella of c.d.f. estimation (second point).
Indeed, if F̂n estimates F and q̂n is the left-continuous inverse of F̂n,

P(q̂n,τ ≤ t) = P(τ ≤ F̂n(t)).
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Position within the literature and contribution

Existing approaches to extreme conditional quantile and expectile
estimation use kernel regression to estimate F (·|x) and E (·|x).
They assume i.i.d. data and do not discuss inference.

Main contribution of the paper

Study the estimation of, and Gaussian inference about, extreme
conditional quantiles and expectiles for stationary α−mixing data.

We do so in a conditional heavy (right) tail model.

Goal of the presentation

Give a flavor of the theory that can be obtained and briefly discuss a
few data-generating processes that can be handled.
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Estimation procedure - Intermediate levels

We concentrate on extreme quantile estimation.

Let (Xt ,Yt), t ≥ 1, be strictly stationary, and assume that X has
p.d.f. g . The conditional c.d.f. F (y |x) of Y given X = x is estimated by

F̂n(y |x) =
1

nhpn ĝn(x)

n∑
t=1

1l{Yt≤y}K

(
x − Xt

hn

)

with ĝn(x) =
1

nhpn

n∑
t=1

K

(
x − Xt

hn

)
.

Here K is a kernel p.d.f. on Rp and hn → 0. Set

q̂n(τ |x) = inf
{
y ∈ R | F̂n(y |x) ≥ τ

}
.

This estimator was considered in e.g. Daouia et al. (2011, 2013). We
first show that it is asymptotically normal at intermediate levels.

9/ 23



Motivation Conditional risk assessment Model, theory and examples Real data analysis Conclusion

Model and assumptions

Condition C2(γ(x), ρ(x),A(·|x)) - Conditional heavy tails

There exist γ(x) > 0, ρ(x) ≤ 0 and a positive or negative measurable
function A(·|x) converging to 0 at infinity such that for any y > 0,

lim
s→∞

F (sy |x)/F (s|x)− y−1/γ(x)

A(1/F (s|x)|x)
=

y−1/γ(x)

γ2(x)

∫ y

1
uρ(x)/γ(x)−1 du

Condition M - Time dynamics

The data (Xt ,Yt), t ≥ 1, form a stationary α−mixing sequence of
copies of (X ,Y ) satisfying assumption C2(γ(x), ρ(x),A(·|x)).

Recall that (Xt ,Yt) is α−mixing if, with Fb
a = σ({(Xj ,Yj), a ≤ j ≤ b}),

α(n) = sup
k≥1

sup
A∈Fk

1

sup
B∈F∞

k+n

|P(A ∩ B)− P(A)P(B)| → 0 as n → ∞.
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Condition A(ln, rn) - Big-block/small-block

There exist sequences (ln) and (rn) such that ln → ∞, rn → ∞,
ln/rn → 0, rn/n → 0 and nα(ln)/rn → 0 as n → ∞.

This ensures asymptotic independence of “big blocks” separated by
“small blocks” of sample means.

We require regularity conditions on X and Y |X . Fix a norm ∥ · ∥ on Rp.

Condition KS - Kernel

K is bounded and symmetric (i.e. K (u) = K (−u)) with a support
contained in the unit closed ∥ · ∥−ball.

Condition Dg - Regularity

g(x) > 0 and g is continuously differentiable in a neighborhood of x
with a Lipschitz continuous gradient at x .
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Condition Dω - Variation in conditional extreme value behavior

For y large enough, the function F (y |·) is differentiable at x , the
function y 7→ ∇x log F (y |x)/ log(y) has a limit µ(x) ∈ Rp as y → ∞,
and there exists r > 0 such that

1

∥x ′ − x∥2

∣∣∣∣ 1

log(y)
log

F (y |x ′)

F (y |x)
− (x ′ − x)⊤

∇x log F (y |x)
log(y)

∣∣∣∣ < ∞

is uniformly bounded for x ′ ∈ B(x , r) and y large.

Conditions KS, Dg and Dω amount to (being able to use the) twice
differentiability of the distribution of X and of the extreme value
behavior of Y given X .
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We finally make two anti-clustering assumptions, one on X and the
other on Y given X .

Condition Bp - Anti-clustering in small balls

There exists an integer t0 ≥ 1 such that

1 ≤ t < t0 ⇒ lim
r→0

r−p P(X1 ∈ B(x , r),Xt+1 ∈ B(x , r)) = 0

and lim sup
r→0

sup
t≥t0

r−2p P(X1 ∈ B(x , r),Xt+1 ∈ B(x , r)) < ∞.

Condition Bp means that values of (Xt) close in time might concentrate
somewhat around x but those far apart in time cannot.

Under Dg , Bp is automatically true if (Xt) is β−mixing, because then
(X1,Xt+1) has a p.d.f. gt uniformly bounded in t around (x , x).

When p ≥ 2, the causal and invertible AR(p) process does not satisfy
this boundedness condition, but satisfies assumption Bp with t0 = p.
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Condition BΩ - Anti-clustering on conditional extremes

There exist h, z > 0 such that Ωh(z |x) < ∞, where

Ωh(z |x) = sup
t≥1

sup
x ′,x ′′∈B(x ,h)

y ,y ′≥z

P(Y1 > y ,Yt+1 > y ′|X1 = x ′,Xt+1 = x ′′)√
F (y |x ′)F (y ′|x ′′)

.

Condition BΩ means that a joint conditional extreme value of (Y1,Yt+1)
cannot be much more likely than a marginal conditional extreme of Y1,
uniformly across time and locally uniformly across the covariate space.

It is (interestingly) much weaker in spirit than analogue conditions in
the unconditional setting.
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Theorem (Intermediate quantiles - A.D., G.S. and A.U.-C. AoS 2023)

Assume that
∑∞

j=1 j
ηα(j) < ∞ for some η > 1. Let τn ↑ 1 and hn → 0

be such that nhpn(1− τn) → ∞ and rnh
p
n → 0, and suppose

nhpn(1− τn){hn log(1− τn)}4 → 0,√
nhpn(1− τn)A((1− τn)

−1|x) = O(1),

There is δ > 0 such that rn(rn/
√
nhpn(1− τn))

δ → 0.

Then √
nhpn(1− τn)

(
q̂n(τn|x)
q(τn|x)

− 1

)
d−→ N

(
0,

∫
Rp K

2

g(x)
γ2(x)

)
.

Certain conditions can be dropped if the data-generating process
satisfies stronger mixing conditions (relevant for examples!)

A stronger, joint convergence result for several intermediate quantile
estimators is available and shall prove useful for the estimation of γ(x).
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Remarks

The asymptotic distribution with dependent (Xt ,Yt) is the same as in
the i.i.d. setting (see Daouia et al., 2011). This is specific to
nonparametric regression problems (see e.g. Linton and Xiao, 2013).

The optimal (over τn and hn) rate of convergence is n2ρ(x)/(2−(p+4)ρ(x)),
for intermediate conditional quantiles with τn = 1− Cn−2/(2−(p+4)ρ(x)).

When ρ(x) → −∞, corresponding to the pure conditional Pareto
model, the optimal convergence rate is n−2/(p+4) (for central quantiles).

This is the optimal convergence rate n−2/(p+4) for central conditional
quantiles under twice differentiability. (Improvement w.r.t. literature!)
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Estimation procedure - Extreme levels

At properly extreme levels, q̂n(τn|x) is not consistent. But

q(τ ′|x) ≈
(
1− τ ′

1− τ

)−γ(x)
q(τ |x) when τ, τ ′ ↑ 1.

Plugging in a consistent estimator γ̂(x) of γ(x) yields a conditional
Weissman-type estimator of q(τ ′n|x) when τ ′n is extreme:

q̂Wn,τn(τ
′
n|x) =

(
1− τ ′n
1− τn

)−γ̂(x)
q̂n(τn|x), where

1− τ ′n
1− τn

→ 0.

We use a (somewhat) Hill-type estimator from Daouia et al. (2011):

γ̂(J)τn (x) =
1

log(J!)

J∑
j=1

log

(
q̂n(1− (1− τn)/j |x)

q̂n(τn|x)

)
, for a fixed J ≥ 2.
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Theorem (Extreme quantiles - A.D., G.S. and A.U.-C. AoS 2023)

Assume also that ρ(x) < 0 and
√
nhpn(1− τn)A

(
(1− τn)

−1|x
)
→ 0.

Let τ ′n ↑ 1 be such that
√

nhpn(1− τn)/ log[(1− τn)/(1− τ ′n)] → ∞.
Then √

nhpn(1− τn)

log[(1− τn)/(1− τ ′n)]

(
q̂Wn,τn(τ

′
n|x)

q(τ ′n|x)
− 1

)
d−→ N

(
0,

∫
Rp K

2

g(x)
γ2(x)

J(J − 1)(2J − 1)

6 log2(J!)

)
.

This relies on the asymptotic normality of γ̂
(J)
τn (x), which uses the joint

asymptotic normality of J intermediate conditional smoothed quantiles.
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Some models where our assumptions are satisfied

Our conditions hold in:

Location-scale models Yt = m(Xt) + σ(Xt)εt where m and σ > 0,
and (εt) is a stationary and centered sequence of unobserved
heavy-tailed innovations independent from the sequence (Xt).

Nonlinear regression models Yt = q(Ut ,θ(Xt)) where (Ut) is a
stationary sequence of unobserved, uniformly distributed
innovations independent from the sequence (Xt), and q(·,θ) is a
smooth parametric family of heavy-tailed quantile functions.

Autoregressive models with heavy-tailed innovations, with the
covariate made of lags of the response.

Regularity conditions (e.g. on m, σ, θ...) are of course necessary!
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Back to the tornado loss data analysis

It was checked using local Generalized Pareto QQ-plots that the
response Y is heavy-tailed conditional on X .

We represent (a bias-corrected version of) q̂Wn,τn(0.995|x) at each
location x , along with the Nadaraya-Watson estimator.

The extreme quantile estimate is calculated using data-driven selection
rules of τn and hn geared towards MSE minimization.

We also provide pointwise asymptotic Gaussian 95% confidence
intervals, with a couple of corrections to try to improve coverage.

Two questions:

Are the regression and extreme value analyses different?

Is kernel smoothing able to smooth over the state-by-state analysis?
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Tornado loss data - Regression analysis

(c) Regression mean
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Figure: Tornado loss data. Left: Estimated conditional mean of losses per
squared yard, right: Extrapolated conditional quantile estimate of those losses
at level τ ′n = 0.995. Cities with the highest estimated conditional average loss
and extreme loss are marked with a black triangle in the left and right panels.
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Location x Nhn,⋆ (x) γ̂
(J,BR)
1−kn,⋆/n

(x) q̂n(0.995|x) q̂W ,BR
n,1−kn,⋆/n

(0.995|x)
New York

413 1.11
16.71 63.53

(NY) [2.46, 113.35] [18.13, 222.70]
Charleston

839 0.96
48.08 56.15

(SC) [12.54, 184.28] [22.58, 139.64]
Nashville

2,317 0.95
16.57 24.51

(TN) [8.31, 33.04] [14.62, 41.08]
Captiva

205 0.93
236.74 144.67

(FL) [36.08, 1553.36] [43.50, 481.13]
New Orleans

1,427 0.98
27.46 31.01

(LA) [11.44, 65.88] [16.42, 58.58]
Woodson

958 1.53
118.37 390.59

(TX) [16.53, 847.72] [100.95, 1511.26]
Kansas City

1,326 1.30
45.99 69.00

(MO) [11.29, 187.43] [25.57, 186.21]
Minneapolis

620 0.93
34.09 40.49

(MN) [9.54, 121.79] [17.01, 96.40]
Harrisville

472 0.79
24.86 29.32

(MI) [4.76, 129.71] [10.28, 83.67]

Table: Tornado loss data. Results at selected cities, with the number of
neighboring observations, along with 95% asymptotic confidence intervals.
Captiva, FL is the city with maximal estimated average loss.
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Conclusion

We revisit nonparametric extremal regression estimation via kernel
smoothing for the conditional distribution function.

We find optimal rates akin to those of central nonparametric regression,
under appropriate twice differentiability conditions w.r.t. x .

Our assumptions hold for a variety of regression models and time series.

I did not talk about: Particular challenges of expectile regression
(bias/variance correction), tuning parameter selection, simulation
results for X ∈ R or R2, a stock market data analysis...

For more, see Daouia, S. & Usseglio-Carleve (2023). Inference for
extremal regression with dependent heavy-tailed data, Annals of
Statistics 51(5): 2040-2066.

Thank you for your attention!
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