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Langevin version of gradient descent algorithms Gibbs measures and optimization

Definitions

Definition (Gibbs measure)

Let V : Rd → R+ be a coercive continuous function such that

e
− V

σ2
0 ∈ L1(λd) for some σ0 > 0 (1)

(λd Lebesgue measure on Rd). Then the Gibbs (probability) measures are
defined for every σ∈ (0, σ0] by

πσ = πVσ := Cσe
− V

σ2 · λd

where Cσ =
(∫

Rd

e−
V (ξ)

σ2 dξ
)−1

.

The Gibbs measures are well-defined since, for every σ ≤ σ0

0 ≤ e−
V
σ2 ≤ e

− V

σ2
0 ∈ L1(λd) since V ≥ 0.

G. Pagès (LPSM) Stochastic optimization: when Langevin comes into the gameLPSM-Sorbonne Univ. 2 / 78



Langevin version of gradient descent algorithms Gibbs measures and optimization

First properties

As V is coercive and non-negative

v∗ = min
Rd

V exists and argminRdV is compact

and πVσ = πV−v∗σ by homogeneity.

Hence, we may assume w.l.g. that

v∗ = 0 and argminRdV = {V = 0}.

For every σ∈ (0, σ0), if λ∈
(
0, 1

σ2 − 1
σ2

0

)
,∫

Rd

eλV dπσ < +∞.

since eλV e−
V (ξ)

σ2 ≤ e
−V (ξ)

σ2
0 .

By the way, why Gibbs measures ?
G. Pagès (LPSM) Stochastic optimization: when Langevin comes into the gameLPSM-Sorbonne Univ. 3 / 78



Langevin version of gradient descent algorithms Gibbs measures and optimization

Fundamental theorem of Gibbs measures

Theorem

Let V : Rd → R+ be a coercive continuous function s.t. e−V /σ2
0 ∈ L1(λd)

for some σ0 > 0 (and v∗ = 0).
(a) Then

∀ε > 0, πσ
(
{V ≥ ε}

)
−→ 0 as σ → 0.

(b) Equivalently, if Xσ
L∼ πσ then

dist(Xσ, {V = 0}) P−→ 0 as σ → 0.

In particular, if {V = 0} = {x⋆} then Xσ
P−→ x⋆.

The theorem remains true if continuity and coercivity are replaced by
the lighter condition

argminVRd = {V = 0} 6= ∅ and λd
(
V ∈ [0, ε)

)
> 0 for every ε > 0.
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Langevin version of gradient descent algorithms Gibbs measures and optimization

Proof of (a)

One has

∀ x ∈ Rd , e−
V (x)

σ2 → 1{V=0}(x) as → 0

since . . .V|{V=0} = 0 and V|{V=0}c > 0.

On the other hand e−
V (x)

σ2 ≤ e
−V (x)

σ2
0 ∈ L1(λd) so that, by Lebesgue’s

dominated convergence theorem,

C−1
σ =

∫
Rd

e−
V (ξ)

σ2 dξ ↘ λd({V = 0}) < +∞ as σ → 0.

One shows that, for every ε > 0,

λd(V ≤ ε/3) = λd
(
e−V /σ2 ≥ e−ε/(3σ2)

)
≤ eε/(3σ2)

∫
Rd

e−
V
σ2 dλd = eε/(3σ2)C−1

σ

so that
Cσ ≤ e

ε
3σ2
(
λd(V ≤ ε/3)

)−1
.
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Langevin version of gradient descent algorithms Gibbs measures and optimization

Proof of (a)

Note that by continuity of V , {V ≤ ε/3} contains a ball B(x⋆, ηε)
where V (x⋆) = 0 and ηε > 0 so that λd({V ≤ ε/3}) > 0.
Now, we have (keep in mind Cσ ≤ e

ε
3σ2
(
λd(V ≤ ε/3)

)−1
)

πσ
(
V ≥ ε

)
= Cσ

∫
{V≥ε}

e−
V
σ2 dλd

= Cσ

∫
{V≥ε}

e−
2V
3σ2 e−

V
3σ2 dλd

≤ Cσe
− ε

3σ2 e−
ε

3σ2

∫
{V≥ε}

e−
V

3σ2 dλd

≤
(
λd
(
V ≤ ε/3

))−1
e−

ε
3σ2

∫
{V≥ε}

e−
V

3σ2 dλd

≤
(
λd
(
V ≤ ε/3

))−1
e−

ε
3σ2

∫
Rd

e−
V

3σ2 dλd

=
(
λd
(
V ≤ ε/3

))−1
e−

ε
3σ2 C√3σ

σ→0−→ 0.
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Langevin version of gradient descent algorithms Gibbs measures and optimization

Proof of (b)

Let ε > 0, and ηε := inf
{
V (x) : dist

(
x , {V = 0}

)
≥ ε
}
> 0.

Hence

P
(
dist(Xσ, {V = 0}) ≥ ε) ≤ P(V (Xσ) ≥ ηε)→ 0 as σ → 0.

Conversely, if dist(Xσ, {V = 0}) P→ 0 then V (Xσ)
P→ 0. Now

L(V (Xσ)) = πσ ◦ V−1

so that
∀ ε > 0, πσ

(
V ≥ ε

)
→ 0 as σ → 0.
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Langevin version of gradient descent algorithms Unique (global) minimum

Unique non degenerate (strict) minima x?

W.l.g. we may assume, up to a change of variable, that x⋆ = 0.

Theorem (Athreya-Hwang I, 2010)

Let V : Rd → R+ be a continuous coercive function such that argmin
Rd

V = {0},

V (0) = 0 and ∇2V (0) exist and is positive definite. Assume furthermore

1 e−V/σ2
0 ∈ L1(Rd , λd) for some σ0 > 0.

2 ∀ x ∈ Rd ,
V (σx)

σ2
−→ g(x) := 1

2x
>∇2V (0)x ∈ R as σ → 0.

3 One has

∫
Rd

sup
0<σ<σ0

e−
V (σx1,...,σxd )

σ2 dx1 . . . dxd < +∞.

Then e−g ∈ L1(Rd , λd) and if Xσ
L∼ πσ for every σ∈ (0, σ0), one has

Xσ

σ

L−→ Cde
−g(x1,...,xd )dx1, . . . , dxd as σ → 0.
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Langevin version of gradient descent algorithms Unique (global) minimum

If ∇2V (0) has a null eigenvalue, then∫
Rd

e−gdλd = +∞

Let V (x1, x2) = x2
1 + x4

2 . Then α1 = 1, α2 = 2 and g = V . One
checks that ((Xσ)1

σ
,

(Xσ)2

σ2

)
L→ C

V
e−V .

How to handle when this happens ?
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Langevin version of gradient descent algorithms Unique (global) minimum

Degenerate minima

What happens when, e.g., ∇2V (0) is degenerate ?

Theorem (Athreya-Hwang II, 2010)

Let V : Rd → [0,∞) be a continuous and coercive function such that :

1 e−V /σ2
0 ∈ L1(Rd).

2 There exist α1, . . . , αd > 0 such that for all x = (x1, . . . , xd) ∈ Rd ,

1

σ2
V (σα1x1, . . . , σ

αd xd) −→ g(x1, . . . , xd) ∈ R as σ → 0.

3

∫
Rd

sup
0<σ<σ0

e−
V(σα1 x1,...,σ

αd xd )
σ2 dx1 . . . dxd < +∞.

Then e−g ∈ L1(Rd) and if Xσ
L∼ πσ for every σ∈ (0, σ0), one has(

(Xt)1

σα1
, . . . ,

(Xt)d
σαd

)
L−→ Cde

−g(x1,...,xd ) as σ → 0.
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Langevin version of gradient descent algorithms Multiple (global) minima

Multiple wells

Assume now argmin
Rd

V = {x1,⋆, . . . , xm,⋆} for some m ∈ N.

The limiting measure of πσ as σ → 0 will be supported by a subset
{x⋆1 , . . . , x⋆m}, with different weights.

Theorem (Athreya-Hwang III, 2010)

Let V : Rd → [0,∞) be continuous and coercive such that:

1 e−V /σ2
0 ∈ L1(λd ,Rd).

2 For all i , there exist (αij)1≤j≤d such that αij ≥ 0 for all j and

1

σ2
V
(
x i ,⋆+(σαi1x1, . . . , σ

αid xd)
)
−→ gi (x1, . . . , xd) ∈ [0,∞) as σ → 0.

3 ∀ i ∈ {1, . . . ,m},
∫
Rd

sup
0<t<1

e−
V (xi,⋆+(σαi1 x1,...,σ

αid xd ))

σ2 dx1 . . . dxd < +∞.

[to be continued . . . ]
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Langevin version of gradient descent algorithms Multiple (global) minima

. . .

Theorem (Athreya-Hwang III, 2010)

Let α := min1≤i≤m

{∑d
j=1 αij

}
and let

J :=
{
i ∈ {1, . . . ,m} :

∑d
j=1 αij = α

}
. Let Xσ ∼ πt , 0 < σ < σ0.

Then:

Xσ
L−→ 1∑

j∈J
∫
Rd e−gj (x)dx

∑
i∈J

∫
Rd

e−gi (x)dx · δx i,⋆ as σ → 0.

The non-empty index set J represent the dominating elements or
“less degenerate”) of {V = 0}.
Only the less degenerate minima are asymptotically “visible” by the
Gibbs measure.
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Langevin version of gradient descent algorithms Multiple (global) minima

How to use this theorem ?

Checking Condition 2 is the core of the problem.

It has been extensively investigated in a recent paper by P. Bras
(Bernoulli 2022) when V has x⋆ is a “higher order” strict minimum. . .

It relies on the analysis of the tensors ∇2kV (x⋆) which are associated
to homogenous polynomials of degree 2k on Rd

A curiosity: it involves the answer to the 17th Hilbert’s problem
(1900): Can such a polynomial be represented as sum of squares of
other polynomials? The answer is “no”

It can be proved that it boils down to look at homogenous
polynomials with even degree. Thus (Motzkin, 1967) exhibited

f (x , y , z) = z6 + x4y2 + x2y4 − 3x2y2z2.

cannot be decomposed
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Langevin version of gradient descent algorithms Gibbs measures as invariant distributions of Langevin equations

Gibbs measures as invariant distributions of Langevin
equations

To localize argmin
Rd

V estimate πσ for small enough σ > 0 is a natural

idea.

Several ways to estimate a distribution, usually as the invariant
distribution of a Markov dynamics

Metropolis algorithm . . .
MCMC
Diffusions
Combination of the above (ULA)

We will opt for diffusions due to its compatibility with recursive
stochastic approximation, flexibility, etc.
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Langevin version of gradient descent algorithms Gibbs measures as invariant distributions of Langevin equations

Let V : Rd → R+ be a coercive, continuously differentiable function
with Lipschitz gradient and satisfying our standing assumption

e
− V

σ2
0 ∈ L1(λd) for some σ0 > 0.

(When this holds true for any σ0 > 0 we will consider by convention
that σ0 = +∞.)

We associate to πσ, σ∈ (0, σ0), the Langevin (Brownian) SDE on a
probability space (Ω,A,P)

(Lσ) ≡ dXt = −∇V (Xt)dt + σ
√

2dWt .

This SDE has a unique strong solution starting from any random
variable X0 ⊥⊥W .

If σ = 0, then V̇ (Xt) = −|∇V (Xt)|2 ≤ 0 so thatV (Xt)↘ and∫ +∞
0 |∇V (Xs |2ds < +∞ so that (. . . ) Xt → {V = 0}.

When σ∈ (0, σ0), we will prove that the SDE has πσ is a unique

invariant distribution i.e. if X0
d
= πσ, then Xt ∼ πσ for every t ≥ 0,

(and much more. . . )
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Langevin version of gradient descent algorithms Gibbs measures as invariant distributions of Langevin equations

Necessary conditions

The infinitesimal generator of the Langevin equation (Lσ) reads for
f ∈ C2(Rd ,R)

Af = −(∇f | ∇V ) + σ2Tr(∇2f ).

Assume νσ = pσ · λd is an invariant distribution.

∀ f ∈ C2
K (Rd ,R), E f (Xt) = E f (X0) =

∫
Rd

f (ξ)νσ(dξ), t ≥ 0.

Hence

E f (Xt) = E f (X0) + E
∫ t

0

Af (Xs)ds + σ
√

2E
∫ t

0

(
∇f (Xs) | dWs),

i.e.

∀ t ≥ 0, E
∫ t

0

Af (Xs)ds = 0

Af is bounded and Xs
d
= νσ = pσ(ξ)dξ, hence by Fubini’s Theorem∫ t

0

EAf (Xs)ds = 0 i.e.

∫ t

0

[∫
Af (ξ)pσ(ξ)dξ

]
ds = 0.
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Langevin version of gradient descent algorithms Gibbs measures as invariant distributions of Langevin equations

Stationary Fokker-Planck equation

Then ∀f ∈ C2
K ,

∫
Af (ξ)pσ(ξ)dξ = 0.

Let A∗ denote the adjoint operator of A on C2
K (Rd ,R) defined by

∀ f , g ∈ C2
K (Rd ,R),

∫
Rd

(A∗g)(ξ)f (ξ) dξ =

∫
Rd

g(ξ)(Af (ξ)) dλd .

Elementary computations show that, if V is C2, it reads

∀ g ∈ C2(Rd ,R), A∗g = div(g∇V ) + σ2∆g .

(div denotes the divergence operator and ∆ the Laplacian operator.)

As a consequence, if pσ∈ C2(Rd ,R) ∩ L1(Rd , λd), then it is a
non-negative λd -integrable weak solution and in fact a classical
solution by approximation arguments to the (elliptic) PDE

σ2∆pσ + div(pσ∇V ) = 0.

G. Pagès (LPSM) Stochastic optimization: when Langevin comes into the gameLPSM-Sorbonne Univ. 17 / 78



Langevin version of gradient descent algorithms Gibbs measures as invariant distributions of Langevin equations

The converse is more demanding. . .

Conversely if a non-negative function gσ∈ C2(Rd ,R) ∩ L1(Rd , λd)
satisfies the elliptic PDE

σ2∆gσ + div(gσ∇V ) = 0,

then it is clear that pσ =
( ∫

Rd gσdλd

)−1
gσ is a probability density

and, by a backward reasoning,

∀ f ∈ C2
K (Rd ,R)λd),

∫
Rd

Af (ξ) pσ(ξ)dξ︸ ︷︷ ︸
=: νσ(dξ)

= 0.

Does it imply stationarity of νσ = pσ · λd ?

Can we make νσ explicit ?
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Langevin version of gradient descent algorithms Gibbs measures as invariant distributions of Langevin equations

Echeverria-Weiss Theorem

The fact that then νσ = pσ · λd is an invariant distribution for the Langevin
equation is a consequence of Echeverria-Weiss Theorem (see [3,
Theorem 9.17]).

Theorem (Echeverria-WeissTheorem)

Let A be a linear operator defined on C2
K (Rd) satisfying

Posit. max. princ. ∀ f ∈ C2
K (Rd), supRd f (x) = f (x0) ≥ 0⇒ Af (x0) ≤ 0.

∃ fn, n ≥ 1, s.t. supn(‖fn‖∞ + ‖Afn‖∞) < +∞, fn → 1 and Afn → 0.

∀ g ∈ C2
K (Rd ,R), νσ(g) = 0.

then there exists a stationary solution for the martingale problem (A, ν) i.e. there
exists a stationary continuous-time homogeneous Markov process with
infinitesimal generator A and ν as an invariant distribution.

Switch from Rd to E locally compact Polish space and C2
K (Rd) to a dense

subset in C0(E ).
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Langevin version of gradient descent algorithms Gibbs measures as invariant distributions of Langevin equations

Heuristics to understand?

Let Pt f (x) = E f (X x
t ). By Itô’s formula to f (X x

t ), f ∈ C2
K (Rd ,R) and taking

expectation implies

Ps f (x) = E f (X x
s ) = f (x) +

∫ s

0

EAf (X x
u )du = f (x) +

∫ s

0

PuAf (x)du

so that (as u 7→ PuAf (x) is continuous),

(?) Af (x) = lim
s→0

Ps f (x)− f (x)

s
.

Assume that for “enough” functions f (?) is also true for Pt f (needs Pt f to
be at least C2). The (Markovian) semi-group property
Ps ◦ Pt = Ps+t = Ps+t = Pt ◦ Ps yields (formally)

APt f (x) = lim
s→0

Ps+t f (x)− Pt f (x)

s
= Pt

(
lim
s→0

Ps f (x)− f (x)

s

)
= PtAf (x)

(this interchange of Pt and the limit is the blocking point in fact) i.e.

∀ t ≥ 0, APt = PtA
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Assume that X0
d
= νσ. As E f (Xt) =

∫
νσ(dξ)Pt f (ξ), we get

E f (Xt) =

∫
fdν +

∫ t

0
EAf (Xs)ds

=

∫
dν +

∫ t

0

[ ∫
PsAf (x0)ν(dx0)

]
ds

=

∫
fdν +

∫ t

0

∫
APs f (x0)ν(dx0)︸ ︷︷ ︸

=0

ds =

∫
fdν

. . . provided Ps f lies in the class of functions g such that ν(Ag) = 0.
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Proposition

Assume V : Rd → R+ be a coercive C2 function with a bounded Hessian ∇2V

s.t. e−V/σ2
0 ∈ L1(λd). Let σ∈ (0, σ0). The Gibbs measure πσ = Cσe

− V
σ2 · λd is

the unique invariant distribution of the Langevin SDE

dXt = −∇V (Xt)dt + σdWt .

Moreover, for every λ∈
(
0, 1

σ2 − 1
σ2

0

)
,
∫
Rd e

λV dπσ < +∞.

Proof (Existence). One computes for every x = (x1, . . . , xd)∈ Rd and every
i ∈ {1, . . . , d},

∂

∂x i

(
e−

V
σ2
∂V

∂x i

)
=

(
∂2V

∂(x i )2
− 1

σ2

(∂V
∂x i

)2
)
e−

V
σ2

and

∂2e−
V
σ2

∂(x i )2
=

(
− 1

σ2

∂2V

∂(x i )2
+

1

(σ2)2

(∂V
∂x i

)2
)
e−

V
σ2

so that
σ2∆ e−

V
2σ2 + div(e−

V
2σ2∇V ) = 0.

As for the V -exponential moment, just note that eλV e−
V
σ2 ≤ e

− V

σ2
0 ∈ L1(Rd , λd).
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Several approaches are possible to establish uniqueness of the invariant
distribution by probabilistic methods.

We choose the most general one based on ellipticity of (Lσ) (also valid for a
wide class of homogenous Markov processes)

We know by Girsanov theorem (. . . ) that for every x ∈ Rd and every t > 0,
the distribution Pt(x , dy) of X x

t is absolutely continuous

Pt(x , dy) = pt(x , y)λd(dy) with pt(x , y) > 0.

Now let ν be any invariant distribution of (Lσ). For every non-negative
Borel function g : Rd → R+, one derives from the identity νPt = ν and
Fubini-Tonelli’s Theorem that∫

g dν = E g(X ν
t ) =

∫ ∫
ν(dx)E g(X x

t ) =

∫
ν(dx)Ptg(x)

=

∫
Rd

ν(dx)

∫
Rd

g(y)pt(x , y)dy =

∫
Rd

g(y)
[ ∫

Rd

pt(x , y)ν(dx)
]
dy .

Hence, as pt(x , y) > 0 for every x , y > 0, ∀ y ,
∫
Rd pt(x , y)ν(dx) > 0,

ν =
[ ∫

Rd

pt(x , y)µ(dx)
]
· λd ∼ λd .
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Langevin version of gradient descent algorithms Gibbs measures as invariant distributions of Langevin equations

As a consequence, any two invariant distributions are equivalent on Rd .

Let µ be another invariant distribution. Then µ ∼ πσ so that

µ = h · πσ, h : Rd → R+ probability density function.

If h ≤ 1 πσ-a.s. then

∫
(1− h)dπσ = πσ(Rd)− µ(Rd) = 0 so that h = 1

πσ-a.s. i.e. µ = πσ.

Otherwise πσ({h > 1}) > 0 and set µ̃ = (h ∧ 1) · πσ. One has µ̃(Rd) ≤ 1

µ̃Ptg =

∫
Rd

(h(x) ∧ 1)Ptg(x)πσ(dx) ≤ µPtg ∧ πσPtg (= µ(g) ∧ πσ(g)).

Then, using the above upper-bound successively in the second line∫
Ptgd µ̃ =

∫
Pt(g1{h≤1}) d µ̃+

∫
Pt(g1{h>1}) d µ̃

≤
∫

g1{h≤1} d µ+

∫
g1{h>1} d πσ

=

∫
{h≤1}

g h dπσ +

∫
{h>1}

g dπσ =

∫
g(h ∧ 1)dπσ =

∫
gd µ̃.

Consequently µ̃Pt ≤ µ̃.
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Langevin version of gradient descent algorithms Gibbs measures as invariant distributions of Langevin equations

Consequently µ̃Pt ≤ µ̃ . . . with the same mass.

Hence µ̃ = µ̃Pt is also an invariant measure.

As µ̃ ≤ πσ by construction it is clear that π̃σ = µ̃ = (1− h)+ · πσ is also a
finite invariant measure.

If π̃σ ≡ 0 then h ≥ 1 πσ-a.s. which implies
∫
hdπσ > 1 since

πσ({h > 1}) > 0. Impossible.

Consequently π̃σ 6≡ 0. Then π̃σ

π̃σ(Rd )
∼ πσ is an invariant distribution which

in turn implies that (1− h)+ > 0 πσ-a.s. or, equivalently, h < 1 πσ-a.s..
Then µ(Rd) < πσ(Rd) which is also impossible. Hence µ = πσ. �

Remarks. • An alternative and more straightforward proof based on a
“confluence” argument (e.g. when V is α-convex is possible (see the exercise
later on).
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Langevin version of gradient descent algorithms Langevin version of a stochastic gradient descent

Stochastic Gradient Descent (SGD)

We start from the standard SGD related to a differentiable function V with
Markovian representation

Yn+1 = Yn − γn+1H(Yn,Zn+1), Y0 = ξ0

where

(Zn)n≥1 is an i.i.d sequence of “innovations” on a probability space
(Ω,A,P),
ξ0 is independent of (Zn)n≥1 on (Ω,A,P),
∇V (y) = EH(y ,Z1), y ∈ Rd , H : Rd × Rq → Rd Borel,
(γn)n≥1 a sequence of (small) constant or decreasing steps.

Its canonical decomposition

Yn+1 = Yn − γn+1∇V (Yn) + γn+1∆Mn+1 with ∆Mn+1 = ∇V (Yn)− H(Yn,Zn+1)

is a sequence of martingale increments (called natural) since

EH(Yn,Zn+1) |FY0,Z
n ) =

[
EH(y ,Z )

]
|y=Yn

= ∇V (Yn)

where FY0,Z
n = σ(Y0,Z1, . . . ,Zn), n ≥ 0, denotes the natural filtration of the

SGD.
G. Pagès (LPSM) Stochastic optimization: when Langevin comes into the gameLPSM-Sorbonne Univ. 26 / 78



Langevin version of gradient descent algorithms Langevin version of a stochastic gradient descent

Gradient Descent (GD)

If H(y , z) = ∇V (y) then ∆Mn ≡ 0 and the recursion reads

yn+1 = yn − γn+1∇V (yn), y0 = ξ0∈ Rd

This recursion is called a Gradient Descent.
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Discussion: Datascience vs Numercial Probability

In Numerical Probability, usually

Z
L∼ p(z)λq(dz), q large

so if the only access to ∇V is

∇V (y) = EH(y ,Z ) =

∫
Rd

H(y , z)p(z)dz ,

simulation becomes the only way out.

We don’t know how to bypass this problem.

In DataScience, one can samples from a (huge) database (zk)k1:N

since

Z
L∼ 1

N

N∑
k=1

δzk ∼ ZIN , IN ∼ U
(
{1 : N}

)
No ! We can’t compute ∇V (y) = 1

N

∑N
k=1 H(y , zk) at each timestep.
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Mini-batch: the art of “en même temps”

One defines (Yn)n≥1 recursively by

Yn+1 = Yn − γn+1
1

M

M∑
k=1

H(Yn,Z
(n)
k ), Y0 = ξ0.

with (Z
(n)
k )k=1:M,n≥1 i.i.d., Z -distributed;

In fact it is a SGD since associated to

H̃(y , z̃) =
1

M

M∑
k=1

H(y , z̃k), z̃ =

 z̃1

...
z̃M

∈ (Rq)M

and Z̃ (n) =

Z̃
(n)
1
...

Z̃
(n)
M

.

It is clear that EH(y , Z̃ (1)) = ∇V (y).
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A.s.convergence theorem

Theorem (Stochastic optimization: Stochastic Gradient Descent)

I Let V : Rd → R+ be a differentiable function lim
|y |→+∞

V (y) = +∞, ∇V

Lipschitz, |∇V |2 ≤ C (1 + V ) and {∇V = 0} = {y∗}.
I Let h(y) = ∇V (y) = EH(y ,Z ) with H s.t. ‖H(y ,Z )‖2 ≤ C

√
1 + V (y) and

that V (Y0)∈ L1(P) (and Y0 ⊥⊥ (Zn)n≥1).

I Assume (γn)n≥1 satisfies (DS).

Then
V (Y∗) = min

Rd
V and Yn

a.s.−→ y∗ as n→ +∞.

Moreover, ∇V (Yn) converges to 0 in every Lp, p∈ (0, 2) (and
(
V (Yn)

)
n≥0

is

L1-bounded so that
(
∇V (Yn)

)
n≥0

is L2-bounded).

Remark ! If H(y , z) = hy) = ∇V (y): Convergence thm for Gradient
descent (GD)!!
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Aternative: Chapter 6 of . . .
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Discussion I

Practitioners often prefer SGD to GD up to adding noise to GD. Why
?

Randomness induced by the “natural noise” of the martingale
increments”  better exploration of the state space.

Randomness in SGD allows avoiding “traps” [Bradière-Duflo, Pemantle,

Lazarev, Fort-Pagès, Benäım in the 1980’s] i.e.

∇V (y) = 0 and E |H(y ,Z )|2 > 0 (. . .)

Note that Mini-batch implementation reduces these positive effects by
its averaging effects

Idea: add exogenous noise. How ?

WARNING ! We will switch from Y  ξ or X̄ (in discrete time) and
X (in continuous time) to make the connection with standard
notations in stochastic calculus and SDE theory.
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Discussion II:

The continuous time counterpart of a GD xn+1 = xn − γn+1∇V (xn) is the ODE

ẋ(t) = −∇V
(
x(t)

)
, x(0)∈ Rd .

Thinking of the Gibbs measures

πσ = Cσe
−V /σ2

.λd
w−→ argmin

Rd

V as s → 0

and the fact that πσ is the invariant measure of

dX (t) = −∇V (X (t))dt + σ
√

2dW (t), X0 ∼ πσ
whose Euler scheme with (possibly) decreasing step γn reads with
Γn = γ1 + · · ·+ γn.

X̄Γn+1 = X̄Γn − γn+1∇V (X̄Γn) + σ
√

2
(
∆Wn+1 := WΓn+1 −WΓn

)
or, with the lighter notations X̄n := X̄Γn ,

X̄n+1 = X̄n − γn+1∇V (X̄n) + σ
√

2
√
γn+1 ζn+1︸ ︷︷ ︸

exogenous noise

, (ζn)n i .i .d . ∼ N (0, Id).
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Application to PSLGD

If we apply the same treament to the SLGD we obtain

ξn+1 = ξn − γn+1H(ξn,Zn+1) + σ
√

2
(
WΓn+1 −WΓn

)
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Application to PSLGD

If we apply the same treament to the SLGD we obtain

ξn+1 = ξn − γn+1H(ξn,Zn+1) + σ
√

2
(
WΓn+1 −WΓn

)
After a canonical decomposition

ξn+1 = ξn − γn+1∇V (ξn) + γn+1∆Mn+1 + σ
√

2 γn+1ζn+1.

where

γn+1∆Mn+1 is the natural “noise” with variance ' O(γ2
n+1).

σ
√

2 γn+1ζn+1 is the exogenous “noise” with variance ' 2dσ2γn+1).

and
O(γ2

n+1) = 2dσ2o
(
γn+1

)
.

The natural noise of the SGD is negligible w.r.t. the exogenous noise of
the PSLGD.
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Roadmap

1 Prove that we can “forget” the natural noise in the recursion i.e. if (X̄n)n≥0

denotes the Euler scheme with steps γn of (L)σ starting from X̄0 = ξ0:

X̄n+1 = X̄n − γn+1∇V (X̄n) + σ
√

2
(
WΓn+1 −WΓn

)
, n ≥ 0, X̄0 = ξ0,

i.e. if ξ0∈ L2(P), then∥∥ξn − X̄n

∥∥
L2(P)

−→ 0 as n→ +∞ (with a rate).

2 As a preliminary step prove that both sequences are L2(P)-bounded.

3 Let X
(⋆,σ)
0 ∼ πσ so that (X

(⋆,σ)
t )t≥0 is a stationary process. Prove∥∥X (⋆,σ)

t − X
(ξ0,σ)
t

∥∥
L2(P)

−→ 0 as n→ +∞ with a rate

We will show that this rate of convergence depends on the regularity of V .

4 Prove that
∥∥X̄n − X

(ξ0,σ)
Γn

∥∥
L2(P)

−→ 0 as n→ +∞ with a rate.

5 Collecting all these results proves∥∥ξn − X
(⋆,σ)
Γn

∥∥
L2(P)

−→ 0 =⇒
(
ξn
W2−→ πσ

)
as n→ 0 with a rate.
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Standing assumption

We will assume in the rest of this section that the potential function
V is α-convex in the sense that

∃α > 0 such that Vα(x) = V (x)− α
2 |x |

2 is convex.

The lemma below sums up he main consequences of this assumption.
This assumption can be at least partially relaxed (see e.g. [2] or [7])

as well as others . . . on σ.
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Standing assumption

Lemma

Assume V is α-convex for some the α > 0 and differentiable.

(a) There exists a real constant Cα,V = V (0)− 1
2α |∇V (0)|2 such that

∀ x∈ Rd , V (x) ≥ α
2 |x |

2 + CV ,α.

In particular, for every σ > 0,

e−
V
σ2 ∈ L1(Rd , λd) and

∫
Rd

|ξ|2πσ(dξ) < +∞.

(b) The vector field ∇V satisfies

∀ x , y ∈ Rd , (∇V (x)−∇V (y) | x − y) ≥ α|x − y |2

(c) If furthermore ∇V is Lipschitz, then there exists α′ > 0 and β′∈ R+ such that

|∇V |2 ≥
(
α′V − β′)+.
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Theorem (Forgetting the SGLD)

(a) Assume V : Rd → R+ is C1 with a Lipschitz continuous gradient ∇V and
α-convex. Assume that H : Rd × Rq → Rd satisfies

∀ ξ∈ Rd , EH(ξ,Z ) = ∇V (ξ) and ‖H(ξ,Z )‖2 ≤ C (1 + V (ξ)
) 1

2 , (2)

that (γn)n≥1 is non-increasing and satisfies∑
n≥1

γn = +∞ and γn ↘ 0

and that EV (ξ0) < +∞. Then

sup
n≥1

E
(
V (ξn) + V (X̄n)

)
< +∞ and

∥∥ξn − X̄n

∥∥
2
−→ 0 as n→ +∞

Remark. (2) implies by Jensen’s inequality |∇V (ξ)|2 ≤ C (1 + V (ξ))
1
2 so that

V (ξ) = O(|ξ|2). Combined with the Lemma(a)

|∇V (x)| � |x | and V (ξ) � |ξ|2 and ∀ p > 0,

∫
Rd

|ξ|pπσ(dξ) < +∞.
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Theorem (With rates)

(b) If furthermore the sequence (γn)n≥1 satisfies

$1 = lim sup
n

γn − γn+1

γ2
n+1

< 2α

then
‖ξn − X̄n‖2 = O(

√
γn).

In particular, when γn = γ1

nr , Then $1 < 2α iff (0 < r < 1) or (r = 1 and
γ1 >

1
2α ).

(c) When EV (ξ0)2 < +∞, then one also has (for the future)

sup
n≥1

E
[
(X̄n)2 + E |∇V (X̄n)|4

]
< +∞.
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Lemma (Magic Step Lemma)

Let p ≥ 1 and let (γn)n≥1 be a non-increasing positive sequence s.t.

$p = lim sup
n

γpn − γpn+1

γp+1
n+1

< +∞.

(i) Let % > $p and let

un = e−ϱΓn

n∑
k=1

γp+1
k eϱΓk , n ≥ 0.

Then, un = O(γpn ).

(ii) Moreover, if for any a < p ϱ
ϖp

,

e−ϱΓn = o(γan).
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Proof of the lemma

Set ũn = un
γ
p
n

, n ≥ 1. We have:

ũn+1 = ũnθn + γn+1 with θn =
( γn
γn+1

)p
e−ϱγn+1 .

Under the assumption, there exists c∈ ($p, %) and n0 ∈ N such that for all n ≥ n0,( γn
γn+1

)p
≤ 1 + cγn+1 ≤ ecγn+1 .

Thus, for n ≥ n0, θn ≤ e−(ϱ−c)γn+1 so that plugging this inequality into the above one,
we deduce

ũn+1 ≤ ũne
−(ϱ−c)γn+1 + γn+1

or, equivalently,
e(ϱ−c)Γn+1 ũn+1 ≤ e(ϱ−c)Γn ũn + C ′e(ϱ−c)Γnγn+1

where C ′ = supk≥1 e
(ϱ−c)γk . Hence, by induction, for every n ≥ n0,

e(ϱ−c)Γn ũn ≤ e(ϱ−c)Γn0 ũn0 + C ′
∫ Γn

Γn0

e(ϱ−c)udu ≤ e(ϱ−c)Γn0 ũn0 +
e(ϱ−c)Γn − e(ϱ−c)Γn0

%− c

so that ũn ≤ ũn0 + 1
ϱ−c

for n ≥ n0 which clearly implies the announced result.
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(ii) Set vn = e−ϱΓnγ−an , n ≥ 1. Let η∈
(
0, pϱa −$p

)
. For large enough n, say

n ≥ n1,
(

γn

γn+1

)p
≤ 1 + ($ + η)γn+1 so that

vn+1 =
(γn+1

γn

)a
e−ϱγn+1vn ≤ (1 + ($p + η)γn+1)

a
p e−ϱγn+1vn ≤ e−cγn+1vn

where c = %− a
p ($ + η) > 0. Consequently vn → 0 as n→ +∞ since∑

n γn = +∞. �
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L2-boundedness of (ξn) and (X̄n)

Denote Vn = V (ξn) and ∇Vn = ∇V (ξn). As ∇V is Lipschitz

Vn+1 ≤ Vn − γn+1

(
∇Vn |H(ξn,Zn+1)

)
+ σ
√

2 (∇Vn |∆WΓn+1 )

+ [∇V ]Lip|γn+1H(ξn,Zn+1) + σ
√

2∆WΓn+1 |2.

By induction that Vn is Fn-adapted and integrable since EV (ξ0) < +∞.

Taking conditional expectations w.r.t. Fn yields

En(Vn+1 | Fn) ≤ Vn − γn+1(∇Vn | ∇Vn) + [∇V ]Lip(γ2
n+1En|H(ξn,Zn+1)|2 + 2dσ2γn+1)

since EnH(ξn,Zn+1) = ∇V (ξn) = Vn owing to the independence of Zn+1

and Fn, En∆WΓn+1 = 0 and En|∆WΓn+1 |2 = dγn+1

Note that, still owing to Zn+1 the independence of Zn+1 and Fn and

Zn+1
d
= Z , we have

En|H(ξn,Zn+1)|2 =
[
E |H(ξ,Z )|2

]
|ξ=ξn

≤ C (1 + Vn).
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L2-boundedness of (ξn) and (X̄n)

It follows from the Lemma(b) that −|∇V |2 ≤ β′ − α′V . Consequently,

En(Vn+1 | Fn) ≤ Vn + γn+1(β′ − α′Vn) + C
d,V

(γ2
n+1Vn + γ2

n+1 + γn+1)

= Vn(1− α′γn+1 + C
d,V
γ2
n+1) + γn+1(C

d,V
+ β′ + C

d,V
γn+1.)

As γn → 0, for every n ≥ n0, γn+1 ≤ α′

2C
d,V

so that

En(Vn+1 | Fn) ≤ Vn(1− α′

2 γn+1) + C ′
d,V
γn+1.

Taking expectation yields, for every n ≥ n0

EVn+1 ≤ EVn(1− α′

2 γn+1) + C ′
d,V
γn+1.

which in turn implies by induction that by induction on n that

sup
n≥1

EVn+1 ≤ max
(

max
k=1,...,n0

EVk ,
2C ′

d,V

α′

)
.
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L2-boundedness of (ξn) and (X̄n)

Proving the same for the Euler scheme (X̄n)n≥0 (starting from ξ0 as
well) is for free : reproduce the above proof when H(ξ, z) = ∇V (ξ).

G. Pagès (LPSM) Stochastic optimization: when Langevin comes into the gameLPSM-Sorbonne Univ. 46 / 78



Langevin version of gradient descent algorithms Analysis of the Langevin Stochastic Gradient Descent I: . . .

L2(P)-convergence

For every n ≥ 0,

ξn+1 − X̄n+1 = ξn − X̄n − γn+1(H(ξn,Zn+1)−∇V (X̄n)) + 0 !!

= ξn − X̄nγn+1(∇V (ξn)−∇V (X̄n)) + γn+1(∇V (ξn)− H(ξn,Zn+1)).

Consequently,

|ξn+1 − X̄n+1|2 = |ξn − X̄n|2 − 2γn+1

(
ξn − X̄n |H(ξn,Zn+1)−∇V (X̄n)

)
+ γ2

n+1|H(ξn,Zn+1)−∇V (X̄n)|2

|ξn+1 − X̄n+1|2 = |ξn − X̄n|2 − 2γn+1

(
ξn − X̄n | ∇V (ξn)−∇V (X̄n)

)
+ γ2

n+1|H(ξn,Zn+1)−∇V (X̄n)|2

+ 2γn+1

(
ξn − X̄n | ∇V (ξn)− H(ξn,Zn+1)

)
.

Taking conditional expectation En (given Fn) implies

En|ξn+1 − X̄n+1|2 ≤ |ξn − X̄n|2 − 2γn+1

(
ξn − X̄n | ∇V (ξn)−∇V (X̄n)

)
+ 2γ2

n+1

(
En|H(ξn,Zn+1)|2 + |∇V (X̄n)|2

)
since EnH(ξn,Zn+1) = ∇V (ξn) and ξn − X̄n is Fn-measurable.
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The function V being α-convex, we know that(
ξn − X̄n | ∇V (ξn)−∇V (X̄n)

)
≥ α|ξn − X̄n|2 so that

En|ξn+1 − X̄n+1|2 ≤ |ξn − X̄n|2(1− 2αγn+1) + 2γ2
n+1

(
En|H(ξn,Zn+1)|2 + |∇V (X̄n)|2

)
≤ |ξn − X̄n|2(1− 2αγn+1) + CV γ

2
n+1(1 + Vn)

Consequently, as (Vn) is L2(P)-bounded by Step 1, we derive that

E |ξn+1 − X̄n+1|2 ≤ E |ξn − X̄n|2(1− 2αγn+1) + C ′
V
γ2
n+1

for some positive constant C ′
V

. If we set Γn = γ1 + · · ·+ γn, n ≥ 1 then one
shows by induction that, for every n ≥ 0,

e2αΓnE|ξn − X̄n|2 ≤ C ′
V

n∑
k=1

e2αΓkγ2
k .

i.e. E|ξn − X̄n|2 ≤ C ′
V
e−2αΓn

n∑
k=1

e2αΓkγ2
k

' C ′
V
e−2αΓn

∫ Γn

0

e2αs γN(s)︸︷︷︸
→0

ds
(Césaro)−→ 0 as n→ +∞ (3)

where N(t) = k if Γk ≤ t < Γk+1.
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Proof of (b)

(b) It follows from the Lemma(a) applied with p = 1 that,
under ($1 < 2α), (3) implies E|ξn − X̄n|2 = O(γn).
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Proof of (c)

Set V̄n = V (X̄n) and and ∇V̄n = ∇V (X̄n) for convenience.

Revisiting the computations performed for (a) with (ξn)n leads to

0 ≤ V̄n+1 ≤ V̄n(1− α′γn+1 + C
V
γ2
n+1) + C

V ,β′,σγ
2
n+1 + σC ′

V

(
∇V̄n |∆WΓn+1

)
.

where |∇V |2 ≥ α′V − β′.
Consequently

0 ≤ V̄ 2
n+1 ≤ V̄ 2

n (1− α′γn+1 + C
V
γ2
n+1)2 +

(
C

V ,β′,σγ
2
n+1 + σC ′

V

(
∇V̄n |∆WΓn+1

))2

+ 2V̄n(1− α′γn+1 + C
V
γ2
n+1)

(
C

V ,β′,σγ
2
n+1 + σC ′

V

(
∇V̄n |∆WΓn+1

))
.

One easily checks by induction that E V̄ 2
n < +∞ for every n ≥ 0 since

E V̄ 2
0 = EV (ξ0)2 < +∞.

Taking conditional expectation w.r.t. to Fn, yields

0 ≤ EnV̄
2
n+1 ≤ V̄ 2

n (1− α′γn+1 + C
V
γ2
n+1)2 + C 2

V ,β′,σ
γ2
n+1 + σ2|∇V̄n|2dγn+1

+ 2C
V ,β′,σγ

2
n+1V̄n(1− α′γn+1 + C

V
γ2
n+1).
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Proof of (c)

Using that supn≥0 E |∇V (X̄n)|2 < +∞ we derive that there exists n1 ≥ 1

and a positive constant C̃ = CV ,∇V ,β′σγn+1 such that for every n ≥ n1,
1− α′γn+1 > 0 and

E V̄ 2
n+1 ≤ E V̄ 2

n (1− α′

2 γn+1)2 + C̃γn+1

≤ E V̄ 2
n (1− α′

2 γn+1) + C̃γn+1.

One concludes like in the first step of the proof of Claim (a) that

sup
n≥0

E V̄ 2
n ≤ max

(
max

k=0,...,n1

E V̄ 2
k ,

2C̃

α′

)
. �
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What is left to be done ?

Compare the solution X ξ0 = (X ξ0
t )t≥0 of the (L)σ equation starting

from ξ0∈ L2(P) with the stationary solution X (⋆,σ) = (X
(⋆,σ)
t )t≥0

starting from X
(⋆,σ)
0

d
= πσ in terms of L2(P)-confluence.

Compare X ξ0 with its Euler scheme (X̄ ξ0
t )t≥0 in terms of

L2(P)-confluence.

The second task is more demanding, let us start by the first one.
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Proposition

Assume V is α-convex and ∇V is Lipschitz continuous. Let
X x = (X x

t )t≥0 denote the solution of (Lσ) starting from X x
0 = x .

(a) For every x , y ∈ Rd and every t ≥ 0,

W2
2 ([X x

t ], [X y
t ]) ≤ E |X x

t − X y
t |2 ≤ e−2αt |x − y |2.

(b) If ξ0, ξ′0∈ L2(P), ⊥⊥W , then (with obvious notations)

E |X ξ0
t − X

ξ′0
t |2 ≤ e−2αtE |ξ0 − ξ′0|2.

(c) If
∫
Rd |ξ|2πσ(dξ) =

∫
Rd |ξ|2e−

V (ξ)

σ2 dξ < +∞ and if ξ
(⋆,σ)
0

d
= πσ then

X (⋆,σ), solution to (Lσ) starting from ξ
(⋆,σ)
0 , ⊥⊥W , is a stationary process

and, for every t ≥ 0, X
(⋆,σ)
t

d
= πσ so that

W2
2 ([X ξ0

t ], πσ) ≤ E |X ξ0
t − X

(⋆,σ)
t |2 ≤ e−2αtE |ξ0 − ξ(⋆,σ)

0 |2.
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Proof (Stochastic processes without stochastic
calculus !).

(a) One has

X x
t − X y

t = x − y −
∫ t

0

(
∇V (X x

s )−∇V (X y
s )
)
ds+0 !!

so that 〈X x − X y 〉t ≡ 0. Itô’s formula yields

e2αt |X x
t − X y

t |2 = |x − y |2 +

∫ t

0

e2αs2α|X x
s − X y

s |2ds +

∫ t

0

(
X x

s − X y
s | d(X x

s − X y
s )
)

= |x − y |2 + 2

∫ t

0

e2αs(α|X x
s − X y

s |2 − (X x
s − X y

s |∇V (X x
s )−∇V (X y

s )︸ ︷︷ ︸
≤ 0 by α-convexity of V

)
ds

for every t ≥ 0, so that, as a non-negative and non-increasing process,

0 ≤ e2αt |X x
t − X y

t |2 −→ Ξx,y
∞ ≤ |x − y |2 as t → +∞.

In particular
∀ t ≥ 0, E |X x

t − X y
t |2 ≤ e−2αt |x − y |2.
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(b) The same reasoning works when replacing x and y by ξ0 and ξ′0 which
yields

0 ≤ e2αt |X ξ0
t − X

ξ′0
t |2 −→ Ξ

ξ0,ξ
′
0∞ ≤ |ξ0 − ξ′0|2∈ L1(P) as t → +∞

which in turn implies

∀ t ≥ 0, E |X ξ0
t − X

ξ′0
t |2 ≤ e−2αtE |ξ0 − ξ′0|2.

(c) is obvious. �
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Langevin version of gradient descent algorithms Analysis of the Langevin Stochastic Gradient Descent II: . . .

The final countdown

Le us introduce the genuine continuous time Euler scheme with
positive non-increasing step (γn)n≥1 of (Lσ) starting from ξ0∈ L2(P)).

X̄t = ξ0 −
∫ t

0
∇V (X̄s)ds + σ

√
2Wt

where t = Γn if t∈ [Γn, Γn+1).

Then

∀ t ≥ 0, Xt − X̄t = −
∫ t

0

(
∇V (Xs)−∇V (X̄s)

)
ds.
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Theorem (Panloup-P. ’23 AAP, Panloup-Égéa ’24, P. ’24)

(a) Standard setting. Assume that V : Rd → R+ is α-convex, C1, ∇V is Lipschitz. If
the step sequence (γn)n≥1 is positive, non-increasing and such that

$1 := lim
n

γn − γn+1

γ2
n+1

< 2α,

then,

∀ n ≥ 1,
∥∥∥ sup

t∈<[Γn−1,Γn ]

|X ξ0
t − X̄ ξ0

t |
∥∥∥

2

≤ C
√
γn.

If γn = γ1
nr
, $1 < 2α iff (0 < r < 1) or (r = 1 and γ1 >

1
2α

).

(b) Smoother setting. Moreover, assume V is C2 with bounded existing partial
derivatives and a Lipschitz continuous Hessian ∇2V and ξ0∈ L4(P). If

$2 := lim
n

γ2
n − γ2

n+1

γ3
n+1

< 2α.

then
∀ n ≥ 0,

∥∥X ξ0
Γn
− X̄ ξ0

Γn

∥∥
2
≤ Cγn.

If γn = γ1
nr
, if $2 < 2α iff (0 < r < 1) or (r = 1 and γ1 >

1
α
).
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Langevin version of gradient descent algorithms Analysis of the Langevin Stochastic Gradient Descent II: . . .

Proof of (a)

We again start by Itô’s formula.

Let α̃ = α− ε where ε is small enough so that 1
2$1 < ᾱ < α. Then

e2α̃t |Xt − X̄t |2 =

∫ t

0

e2α̃s
(
2α̃|Xs − X̄s |2 − 2(Xs − X̄s | ∇V (Xs)−∇V (X̄s)

)
ds

= 2

∫ t

0

e2α̃s
(
α̃|Xs − X̄s |2 − (Xs − X̄s | ∇V (Xs)−∇V (X̄s)

)
ds

+ 2

∫ t

0

e2α̃sR(s)ds

≤ 2(α̃− α)

∫ t

0

e2α̃s |Xs − X̄s |2ds + 2

∫ t

0

e2α̃sR(s)ds

with
R(t) = −

(
Xs − X̄s | ∇V (X̄s)−∇V (X̄s)

)
, t ≥ 0.

Hence, for every t ≥ 0,

|Xt − X̄t |2 ≤ 2e2−α̃t(α̃− α)

∫ t

0

e2α̃s |Xs − X̄s |2ds + 2e−2α̃t

∫ t

0

e2α̃sR(s)ds
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Proof of (a)

By Young’s inequality, for every t ≥ 0

|R(t)| ≤
∣∣Xt − X̄t

∣∣ ∣∣∇V (Xt)−∇V (X̄t)
∣∣ ≤ ε

2

∣∣Xt − X̄t

∣∣2 +
[∇V ]Lip

2ε

∣∣X̄t − X̄t

∣∣2
so that

|Xt − X̄t |2 ≤ 2(α̃ + ε
2
− α)e−2α̃t

∫ t

0

e2α̃s |Xs − X̄s |2ds +
[∇V ]Lip

ε
e−2α̃t

∫ t

0

e2α̃s
∣∣X̄s − X̄s

∣∣2ds
=

[∇V ]Lip

ε
e−2α̃t

∫ t

0

e2α̃s
∣∣X̄s − X̄s

∣∣2ds
since α̃ < α− ε

2 . Set γ̄ = supk≥1 γk . One has, for t∈ [Γn−1, Γn], n ≥ 1,

sup
t∈[Γn−1,Γn]

|Xt − X̄t |2 ≤ e2α̃γ̄ [∇V ]Lip
ε

e−2α̃Γn

∫ Γn

0

e2α̃s
∣∣X̄s − X̄s

∣∣2ds.
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Proof of (a)

By Young’s inequality, for every t ≥ 0

|R(t)| ≤
∣∣Xt − X̄t

∣∣ ∣∣∇V (Xt)−∇V (X̄t)
∣∣ ≤ ε

2

∣∣Xt − X̄t

∣∣2 +
[∇V ]Lip

2ε

∣∣X̄t − X̄t

∣∣2
so that

|Xt − X̄t |2 ≤ 2(α̃ + ε
2
− α)e−2α̃t

∫ t

0

e2α̃s |Xs − X̄s |2ds +
[∇V ]Lip

ε
e−2α̃t

∫ t

0

e2α̃s
∣∣X̄s − X̄s

∣∣2ds
=

[∇V ]Lip

ε
e−2α̃t

∫ t

0

e2α̃s
∣∣X̄s − X̄s

∣∣2ds
since α̃ = α− ε

2 . Set γ̄ = supk≥1 γk . One has, for t = Γn, n ≥ 1,

(??) E sup
t∈(Γn−1,Γn]

|Xt − X̄t |2 ≤ e2α̃γ̄ [∇V ]Lip
ε

e−2α̃Γn

∫ Γn

0

e2α̃sE
∣∣X̄s − X̄s

∣∣2ds.
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Proof of (a) (end)

Now

X̄s − X̄s = −(s − s)∇V (X̄s) + σ
√

2(Ws −Ws) for every s ≥ 0

so that by the first step

E |X̄s − X̄s |2 ≤ (s − s)2 sup
u≥0

E |∇V (X̄u)|2 + dσ
√

2(s − s)

≤ (s − s)
(

(s − s)CV

(
1 + sup

u≥0
EV (X̄u)

)
+ dσ

√
2
)
≤ CV ,γ̄,d(s − s).

Inserting this in (??) yields

E sup
t∈(Γn−1,Γn ]

|Xt − X̄t |2 ≤ C̃V ,γ̄,ε e
−2α̃Γn

∫ Γn

0

e2α̃s(s − s)ds

≤ C̃V ,γ̄,ε e
−2α̃Γn

n∑
k=1

∫ Γk

Γk−1

e2α̃s(s − s)ds

≤ C̃V ,γ̄,ε e
−2α̃Γn

n∑
k=1

e2α̃Γ
k γ2

k = O(γn).

owing to the Magic step Lemma applied with p = 1. �
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Proof of (b) = revisiting R(t)

Let ∇2V the Hessian of V . First order Taylor formula to ∇V between X̄s

and X̄s yields

−R(t) =
(
Xs − X̄s |∇V (X̄s)−∇V (X̄s)

)
=
(
Xs − X̄s |∇2V (X̄s)(X̄s − X̄s)

)
+

∫ 1

0

(Xs − X̄s)
∗(∇2V (X̄s + u(X̄s − X̄s))−∇2V (X̄s))(X̄s − X̄s)du︸ ︷︷ ︸

=:(3)s

We replace now X̄s − X̄s by its value in the first term(
Xs − X̄s |∇2V (X̄s)(X̄s − X̄s)

)
= −

(
Xs − X̄s |∇2V (X̄s)∇V (X̄s)

)
(s − s)︸ ︷︷ ︸

=:(1)s

+ σ
(
Xs − X̄s |∇2V (X̄s)(Ws −Ws)

)︸ ︷︷ ︸
=:(2)s

.

Now, let us inspect these three terms to bound their expectations.
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Proof of (b) : Term (1)s (easy)

The first term (1)s can be upper-bounded by Young’s inequality

|(1)s | ≤
ε

4
|Xs − X̄s |2 +

‖∇2V ‖F ,sup

ε
|∇V (X̄s)|2(s − s)2

so that

|E (1)s | ≤ E |(1)s | ≤
ε

4
E |Xs − X̄s |2 +

1

ε
‖∇2V ‖F ,sup sup

n≥0
E |∇V (X̄Γn)|2(s − s)2

where ‖∇2V ‖F ,sup = supx!∈Rd ‖∇2V (x)‖ (Fröbenius norm)

and supn≥0 E |∇V (X̄Γn)|2 < +∞ since |∇V |2 ≤ C (1 + V ).
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Proof of (b) : Term (3)s (easy but needs 4th moment !)

Again by Young’s inequality, one shows for (3)s that

|E (3)s | ≤ [∇2V ]LipE |Xs − X̄s | |X̄s − X̄s |2

≤ ε

4
E |Xs − X̄s |2 +

[∇2V ]2
Lip

ε
E |X̄s − X̄s |4.

It straightforwardly follows that

E |X̄s − X̄s |4 ≤ (s − s)2E |∇V (X̄s)|4 + 2d(d + 2)σ2(s − s)2.

As ξ0∈ L4(P)
sup
n≥0

EV (X̄Γn)2 < +∞

so that sup
u≥0

E |∇V (X̄u)|4 ≤ C
(
1 + sup

n≥0
EV (X̄Γn)2

)
< +∞ owing to the

former Theorem(b).

Finally his in turn implies

E |X̄s − X̄s |4 ≤ C (s − s)2.
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Proof of (b) : Term (2)s (the key!)

Using the expression of Xs − X̄s = −
∫ s

0 (∇V (Xs ) − ∇V (X̄s ))ds, one gets

(2)s = −σ
(∫ s

0

(
∇V (Xs)−∇V (X̄s)

)
ds | ∇2V (X̄s)(Ws −Ws)

)
.

It is clear that both

∫ s

0

(
∇V (Xs)−∇V (X̄s)

)
ds and ∇2V (X̄s) are

Fξ0,W
s -measurable hence independent of Ws −Ws so that

E
(
(2)s | Fs

)
= −σ E

(∫ s

s

(
∇V (Xs)−∇V (X̄us)

)
ds | ∇2V (X̄s)(Ws −Ws)

∣∣∣Fs

)
.

Consequently,

E (2)s = −σE
(∫ s

s

(
∇V (Xs)−∇V (X̄s)

)
ds | ∇2V (X̄s)(Ws −Ws)

)
.
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Proof of (b) : Term (2)s

This in turn implies, using successively Cauchy-Schwartz and generalized
Minkowski’s inequalities∣∣E (2)s

∣∣ ≤ σ[∇V ]Lip

∥∥∥∫ s

s

|Xs − X̄s |ds
∥∥∥

2

‖∇2V ‖F ,sup

∥∥Ws −Ws

∥∥
2

≤ σ[∇V ]Lip

∫ s

s

∥∥Xs − X̄s‖2ds ‖∇2V ‖F ,sup

√
d(s − s)1/2.

Now
∥∥Xs − X̄s‖2 ≤

∥∥Xs − X̄s‖2︸ ︷︷ ︸
cf. regular rate by (a) !

+
∥∥X̄s − X̄s‖2︸ ︷︷ ︸
C(s−s)1/2

. Invoking claim (a) and

the former upper bound for the second term yields

sup
s∈[Γn,Γn+1]

∥∥Xs − X̄Γn‖2 ≤ CV ,γ̄,dγ
1/2
n+1 and sup

s∈[Γn,Γn+1]

∥∥X̄s − X̄s‖2 ≤ Cγ
1/2
n+1.

Inserting this into the above bound yields

sup
s∈[Γn,Γn+1]

∣∣E (2)s
∣∣ ≤ C ′V ,γ̄,dσ γn+1 γ

1/2
n+1 γ

1/2
n+1 ≤ γ

2
n+1.
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Proof of (b) : Term (2)s (end)

Inserting the resulting bound into R(s),

re-assigning the two terms ε
4E |Xs − X̄s |2 to the other integral of the r.h.s.

of the same equation

and noting that α̃ + ε
2 + 2 ε

4 = α yields

e2α̃tE|Xt − X̄t |2 ≤ C̃ ′V ,γ̄,d,ε

∫ t

0

e2α̃s(s − s)2ds

i.e.

sup
t∈[Gn−1,Γn]

E|Xt − X̄t |2 ≤ e2α̃γ̄e−2α̃Γn

n∑
k=1

e2α̃Γkγ3
k = O(γ2

n)

owing to Lemma (a), applied with p = 2 since 2α̃ > $2 or equivalently

sup
t∈(Γn−1,Γn]

∥∥Xt − X̄t

∥∥
2

= O(γn). �
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Langevin version of gradient descent algorithms Synthesis: LGD versus LSGD

Synthesis I

The sequence (X̄n)n≥0 is the Euler scheme of (L)σ), is also the Langevin
“excited” version of the deterministic gradient descent (GD) induced by V .

X̄n+1 = X̄n − γn+1∇(X̄n) +
√

2γn+1σ ζn+1, X̄0 = ξ0.

whereas (ξn)n≥0 as mentioned from the beginning is the Langevin excited version

of the Stochastic Gradient Descent (SGD) induced by V associated to H(y ,Z).

ξn+1 = ξn − γn+1H(ξn,Zn+1) +
√

2γn+1σ ζn+1,

In the theorem below, keep in mind that X ⋆,σ the stationary solution

of (L)σ starting from X ⋆,σ
0

d
= πσ, n ≥ 0.
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Langevin version of gradient descent algorithms Synthesis: LGD versus LSGD

Synthesis II: main theorem

Theorem (. . . Durmus-Moulines ’18, . . . Panloup-P. ’23, Égéa-Panloup ’24, P.’24)

Assume V is C1 and α-convex, α > 0, with Lipschitz gradient. Let ξ0∈ L2(P).

Let (ξn)n≥0 and and let (X̄n)n≥0 be the Langevin SGD and GD respectively.

(a) If (γn)n≥1 satisfies $1 < 2α,

W2([ξn], πσ) ≤ ‖ξn − X ⋆,σ
Γn
‖2 ≤ CH,X

√
γn + ‖ξ0 − ξ(⋆,σ)

0 ‖2e
−αΓn = O(

√
γn).

and

W2([X̄n], πσ) ≤
∥∥X̄n − X ⋆,σ

Γn

∥∥
2
≤ C

X

√
γn + ‖ξ0 − ξ(⋆,σ)

0 ‖2e
−αΓn = O(

√
γn).

(b) If furthermore V is C2 with Lipschitz Hessian ∇2V , ξ0∈ L4(P) and (γn)n≥1

satisfies $2 < 2α, then

‖X̄n − X ⋆,σ
Γn
‖2 ≤ C

X
γn + ‖ξ0 − ξ(⋆,σ)

0 ‖2e
−αΓn = O(γn).
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ℵ Practitioner’s corner

Pre-conditioners for ℵ-practitioners (by Panloup-P.’23 & Bras-P.’24)

To still improve the convergence and in particular to help even more the
SGLD procedure escape from local minima, practitioners introduced so-called
pre-conditioners (see [6]) by making σ depend on Xt in (L)σ, namely

σ  σ ϑ(Xt), or σ ϑ(∇V (Xt), or σ ϑ(V (Xt)).

A theoretical background has been provided in [7] to justify en highlight this
heuristics.

Proposition

The diffusion (Lσ(x)) dXt = b(Xt)dt +
√

2σ ϑ(Xt)dWt , X0 = ξ0

where the drift b is defined by

b := −
(

(ϑϑ⊤)∇Vσ2 −
[ d∑

j=1

∂x j (ϑϑ
⊤)ij
]
i=1:d

)
also has π(σ) as a unique invariant distribution (under an ellipticity assumption on the
preconditioner ϑ).
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ℵ Practitioner’s corner

Pre-conditioners (by Panloup-P.’23 [7] & Bras-P.’24 [2])

The implementable version of (Lσ(x)) is simply its Euler scheme with
(constant or decreasing) step γn > 0 and b as above

It is known as PGLD for Preconditioned Gradient Langevin Dynamics,

X̄n+1 = X̄n − γn+1b(X̄n) +
√

2γn+1 σϑ(X̄n)ζn+1, n ≥ 0, X̄0 = ξ0,

were (ζn)n≥1 is i.i.d. and N (0, Id)-distributed and b as above.

This improved version is investigated in [7] in its decreasing step mode w.r.t.
W1-distance.

Theorem (P.-Panloup, AAP ’23 [7])

Under (higher than above) regularity assumptions on ∇V and σ and uniform
ellipticity assumptions but only α-confluence outside a compact set of (Rd)2

W1

(
[X̄n], πσ) ≤ CX ,γγn

∥∥[X̄n]− πσ
∥∥

VT
= o(γ1−η

n ), ∀η > 0.

It is implementation by ℵ practitioners in order to “improve” a gradient
descent is usually carried out with a small enough constant step γ > 0.
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ℵ Practitioner’s corner

When adapted to a SGD, regular or mini-batch it is called PSGLD for
Preconditioned Stochastic Gradient Langevin Dynamics and reads

ξn+1 = ξn − γH(ξn,Zn+1) +
√

2γn+1 σ ϑ(ξn)ζn+1, n ≥ 0.

ℵ Practitioners. . . usually consider diagonal pre-conditioners of the form

∀ ξ = (ξ1, . . . , ξd)∈ Rd , ϑϑ>(ξ) = Diag
((
ϕ(∂ξ1V (ξ))

)2
, · · · ,

(
ϕ(∂ξdV (ξ))

)2
)
.

Numerical experiments carried out by practitioners suggest that the resulting
additive correcting term in the drift

b := −
(

(ϑϑ⊤)∇Vσ2−
[ d∑

j=1

∂x j (ϑϑ
⊤)ij
]
i=1:d

)
in the drift, which is too computationally demanding in terms of complexity,
can be neglected without damage for practical implementation (see [6]).
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ℵ Practitioner’s corner Simulated annealing version

Simulated annealing regime

In what precedes, practitioners’ strategy, is to set either

– σ small enough, but not too small

– or to make σ decrease by “plateaux” toward σ∞ > 0 (see [3])

to get a good compromise between exploration and convergence.

A simulated annealing version of the above procedures. has been introduced
and analyzed in [2, 3], in which, σ = σn is no longer constant but slowly
decreasing to 0 to capture the true agminRdV .

The appropriate tuning turns out to be

σn =
c√

log n
↓ 0.
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ℵ Practitioner’s corner Simulated annealing version

Simulated annealing regime

This implementation makes the procedure enter the simulated annealing
regime and one can show mutatis mutandis under the assumptions of the
above theorems on the Gibbs measures and the former convergence
theorems that

ξn
P−→ argminRdV

(convergence in probability).

This simulated annealing regime for (more general) stochastic approximation
procedures goes back to the seminal paper [4] by Gelfand & Mitter en 1991.

However, in practice the tuning of such a variant of the algorithms is very
sensitive to the parameters (especially c) and it is not implemented for high
dimensional optimization problems like those commonly encountered
nowadays in Machine Learning.
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Langevin boosting as a paradigm

Adam algorithm (Adaptive moment estimation)

The Adam algorithm reads as follows

gn+1 = H(θn−1,Zn+1) with EH(θ,Z ) = ∇θV (θ)

mn+1 = β1mn + (1− β1)gn+1 vn+1 = β2mn + (1− β2)g2
n+1

m̂n+1 =
mn+1

1− βn+1
1

, v̂n+1 =
vn+1

1− βn+1
2

θn+1 = θn − γn+1
m̂n+1√
v̂n + ε

with γn = α ' 10−3, β1 ' 0.9 ∈ [0, 1], β2 ' 0.999 ∈ [0, 1], ε ' 10−8.

Initialize m0, v0 and θ0. Then for n ≥ 0

(θn+1,mn+1, vn+1) = θn − γn+1.Hadam(θn,mn, vn).

Compromise between

AdaGrad (Duchi et al., 2011) (for sparse gradients),
RMSProp (Tieleman & Hinton, 2012) (on line algo. for non stationary
data).
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Langevin boosting as a paradigm

Langevin Adam algorithm

Set, for n ≥ 0

ξn =

 θn
mn

vn

 .

Langevin Adam algorithm: let (ζn)n≥1 i.i.d., ∼ N (0, Id).

ξn+1 = ξn − γn+1.Hadam(θn,mn, vn) + σn+1
√
γn+1ζn+1

with σn = σ small or σn = σ/
√

log n (simulated annealing version).

PreconditionedLangevin Adam algorithm: cf. [Bras-P. IJCNN2023]

ξn+1 = ξn − γn+1Pn+1.Hadam(ξn) + σn+1
√
γn+1Tn+1ζn+1

with Tn+1T
top
n+1 = Pn+1. . .
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Langevin boosting as a paradigm
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Introduction: Stochastic Optimal Control trough Gradient Descent

We consider the following Stochastic Optimal Control (SOC) problem associated
with a Stochastic Di�erential Equation (SDE):

min
u

J(u) := E
[∫ T

0

G(Xt)dt + F (XT )

]
, (1)

dXt = b(Xt , ut)dt + σ(Xt , ut)dWt , t ∈ [0,T ] (2)

Xt : trajectory vector

ut : control vector

b(Xt , ut): controlled drift vector

σ(Xt , ut): controlled di�usion matrix

Wt : Brownian motion (white noise process)

=⇒ Optimize a functional of a trajectory of a SDE Xt through the control ut ,
including a random noise that a�ects the evolution of the system.
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Example: Resource Management

An oil drilling company has to balance the costs of extraction and of storage of oil in a
volatile energy market:

Trajectory: Volatile global oil price and quantity of stored (unsold) oil for the
company

Control: Quantities of instantaneously extracted, stored and sold oil

Figure: O�shore oil rig - Source: Unsplash Figure: Crude oil price during the year 2022
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Discretization and numerical scheme

Euler-Maruyama scheme

min
θ

J̄(ūθ) := E
[ N−1∑

k=0

(tk+1 − tk )G(X̄ θ
tk+1

) + F (X̄ θ
tN
)
]
, (3)

X̄ θ
tk+1

= X̄ θ
tk

+ (tk+1 − tk )b
(
X̄ θ
tk
, ūk,θ(X̄

θ
tk
)
)

+
√

tk+1 − tkσ
(
X̄ θ
tk
, ūk,θ(X̄

θ
tk
)
)
ξk+1, (4)

ξk ∼ N (0, Id2 ) i.i.d.

Time discretization of [0,T ]:

tk := kT/N, k ∈ {0, . . . ,N}, h := T/N

Control u with parameter θ using either one time-dependant neural network
either N distinct neural networks: utk = ūθ(tk ,Xtk ) or utk = ūθk (Xtk )

Since the process is Markovian, we assume the control depends only on the
running position Xt (instead of the whole previous trajectory (Xs)s∈[0,t]).
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Gradient Descent

The parameter θ is optimized by gradient descent:

Simulate batches of trajectories X̄ depending on the Brownian motion.

Compute ∇θ J̄ = ∇θ J̄(ūθn , (ξ
i,n+1
k )1≤k≤N); the gradient is computed by

automatic di�erentiation as the gradient w.r.t. to θ is tracked all along the
trajectory of the numerical scheme Giles and Glasserman (2005); Giles (2007)

In the literature:
SOCs are solved using speci�c techniques: Forward-Backward SDEs,
Hamilton-Jacobi-Bellman (HJB) optimality conditions, stochastic dynamic
programming. The resolution of SOCs by neural networks scales to the high
dimension, contrary to dynamic programming Gobet and Munos (2005); Han and
Weinan (2016); Bachouch et al. (2022); Laurière et al. (2023).
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u

· · · Xtk SDE Xtk+1 SDE Xtk+2 · · ·

G G G

· · · + + + · · ·

Figure: Markovian Neural Network with one control.

utk utk+1

· · · Xtk SDE Xtk+1 SDE Xtk+2 · · ·

G G G

· · · + + + · · ·

Figure: Markovian neural network with one control for every time step.
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Very deep neural networks

If the control is applied at many discretization times, then the Markovian Neural
Network becomes a very deep neural network, di�cult to train directly.

Adding noise during training is known to improve the learning procedure
Neelakantan et al. (2015); Anirudh Bhardwaj (2019):

Gradient Langevin Algorithm

For some choice of Preconditioner rule P (Adam, RMSprop...), step size γn+1 and
and computed gradient gn+1:

θn+1 = θn − γn+1Pn+1 · gn+1+σn+1
√
γn+1N (0,Pn+1) (5)

=⇒ per-dimension adaptive noise rate.

Bras (2022): the deeper the network is, the greater are the gains provided by
Langevin algorithms; introduces the Layer Langevin algorithm, consisting in
adding Langevin noise only to the deepest layers.

=⇒ Analysis was conducted especially for deep architectures in image classi�cation.
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Our objectives

Side-by-side comparison of non-Langevin/Langevin optimizers on di�erent SOC
problems: �shing quotas, �nancial hedging, energy management.

If using multiple controls (second case), explore the bene�ts of Layer-Langevin.
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Fishing quotas, Laurière et al. (2023)

Fish biomass Xt ∈ Rd1 with:

Inter-species interaction κXt

Fishing following imposed quotas ut

Objective: keep Xt close to an ideal state Xt .
Figure: Source: Unsplash

dXt = Xt ∗ ((r − ut − κXt)dt + ηdWt)

J(u) = E
[∫ T

0

(|Xt −Xt |2 − ⟨α, ut⟩)dt + β[u]0,T
]
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Figure: Example of a "�sh" trajectory of Xt ∈ R5.
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Results for Fishing quotas
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Figure: Comparison of Adam et L-Adam algorithms during the training for the �shing control
problem with N = 20, 50, 100 respectively. J is estimated over 50× 512 trajectories. A zoom
on the last epochs is given.

Table: Best performance

N = 20 N = 50 N = 100
Adam 0.3910 0.3912 0.4029
L-Adam 0.3886 0.3864 0.4011
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Figure: Comparison of Langevin algorithms with their non-Langevin counterparts during the
training for the �shing control problem with N = 50.
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Figure: Training of the �shing problem with multiple controls with N = 10
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Deep Financial Hedging, Buehler et al. (2019)

We aim to replicate some payo� Z de�ned on some
portfolio St by trading some of the assets with trans-
action costs; the control ut is the amount of held
assets. The objective is

Figure: Source: Unsplash

J(u) = ν

(
−Z +

N−1∑
k=0

⟨utk ,Stk+1 − Stk ⟩ −
N∑

k=0

⟨ctr , Stk ∗ |utk − utk−1 |⟩
)

(6)

where ν is a convex risk measure. We consider the assets St to be follow a Heston
model and are tradable along with variance swap options.
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Results for Deep Hedging
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Figure: Comparison of algorithms during the training for the deep hedging control problem
with N = 30, 50, 50 respectively

Table: Best performance

Adam, N = 30 Adam, N = 50 Adadelta, N = 50
Vanilla 0.4448 0.6355 0.4671
Langevin 0.4306 0.4182 0.3773
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Figure: Training of the deep hedging problem with multiple controls with N = 10

Table: Best performance

Adam RMSprop Adadelta
Vanilla 0.6626 0.5618 1.2900
Langevin 0.7278 0.4441 0.9250

Layer Langevin 30% 0.6004 0.4102 0.8554
Layer Langevin 90% 0.6377 � �

Pierre BRAS and Gilles PAGÈS Langevin Algorithms for Markovian Neural Networks



Resource Management and Oil Drilling, Goutte et al. (2018); Gaïgi et al.
(2021)

An oil driller has to balance the costs of extraction Et , storage St in a volatile energy
market with oil price Pt :

dPt = µPtdt + ηPtdWt

J(q) = −E
[∫ T

0

e−ρrU
(
qvr Pr + qv,sr (1− ε)Pr − (qvr + qsr )ce(Er )− cs(Sr )

)
dr

]
,

Et =

∫ t

0

(qvr + qsr )dr , St =

∫ t

0

(qsr − qv,sr )dr

where U is the utility function and qt = (qvt , q
s
t , q

v,s
t ) is the control (extracted, stored,

sold from storage).
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Results for Oil Drilling
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Figure: Comparison of algorithms during the training for the oil drilling control problem with N = 50
Table: Best performance

Adam RMSprop Adadelta
Vanilla -0.1729 -0.1985 -0.1649
Langevin -0.1915 -0.2032 -0.1929
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Conclusion

In various problems, Langevin and Layer Langevin algorithms show improvements
in comparison with their respective non-Langevin counterparts.

Gains depend on the setting and optimizer; we observe that gains are limited or
null for the RMSprop algorithm.

For SOC with multiple controls, we proved the gains of Layer Langevin algorithms
with a small number of layers (∼10%-30%).
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Thank you for your attention !
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