
Recent results on Epidemic Models

Etienne Pardoux (I2M, AMU)

joint work with R. Forien (INRAE), G. Pang (Rice Univ. USA), A.B. Zotsa (AMU)

Le Mans

Etienne Pardoux (I2M, AMU) 30 ans du LMM May 22, 2024 1 / 24



Kermack and McKendrick, two pioneers

In 1927, W.O. Kermack and A.G. McKendrick published a paper
which proposes a SIR model of propagation of epidemic diseases with
an infection–age dependent infectivity and an infection–age
dependent recovery rate. In that paper, they treated also the special
case of constant infectivity and constant recovery rate.

That paper was quoted more than 10 000 times, but almost all
successors of these pioneers considered only the model with constant
rate, which is the following ODE model.

dS

dt
(t) = −λS(t)I (t),

dI

dt
(t) = λS(t)I (t)− ρI (t),

dR

dt
(t) = ρI (t) .

As we shall see below, the general model involves an integral equation
of Volterra type (or alternatively a PDE).
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Constant vs. non–constant recovery rate

Let I denote the length of the infectious period of a typical individual.

P(I > t) = exp(−µt), t > 0, means that I follows the exponential
distribution with parameter µ.

Let t 7→ µ(t) be measurable from R+ into itself, s.t.∫∞
0 µ(t)dt = +∞. Assume

(∗) P(I > t) = exp

(
−
∫ t

0
µ(s)ds

)
, t > 0.

It is easy to deduce that I has the density

f (t) = µ(t) exp
(
−
∫ t

0 µ(s)ds
)

.

Conversely, given a probability density f on R+, define its hazard

function as µ(t) :=
(∫∞

t f (s)ds
)−1

f (t), then we have (∗).

Assuming that the individuals recover at an infection–age dependent
rate allows to choose an arbitrary distribution with density for I.
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Interlude : Poisson process and PRM

If P(t) is a standard Poisson process, then P(λt) is a rate λ Poisson
process, and P(

∫ t
0 λ(s)ds) is a rate λ(t) Poisson process.

If Q is a standard PRM on R2
+, i.e. Q is a sum of Dirac measures at

random points, the numbers of points in disjoints subsets are
mutually independent, and the number of points in A follows the
Poi(Leb(A)) distribution, then∫ t

0

∫ ∞
0

1u≤λ(s)Q(ds, du)

is a rate λ(t) Poisson process.

Law of large numbers : as N →∞, N−1P(Nt)→ t a.s., locally
uniformly in t (standard LLN + Dini theorem).
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ODE model as LLN limit of Markov stochastic models 1

For all t ≥ 0, SN(t) + IN(t) + RN(t) = N.

Suppose that each infectious individual meets others at rate β. With
probability the proportion of susceptibles in the population, i.e.
SN(t)/N, the individual who is met is susceptible, in which case the
encounter results in a new infection with probability p. Let λ := βp.
Assume that the durations of the infectious periods of the various
individuals are i.i.d., with the law Exp(µ).

Then (with Pinf and Prec two independent standard Poisson proc.)

SN(t) = SN(0)−Pinf

(
λ

∫ t

0
N−1SN(s)IN(s)ds

)
,

IN(t) = IN(0)+Pinf

(
λ

∫ t

0
N−1SN(s)IN(s)ds

)
−Prec

(
µ

∫ t

0
IN(s)ds

)
,

RN(t) = RN(0)+Prec

(
µ

∫ t

0
IN(s)ds

)
.
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ODE model as LLN limit of Markov stochastic models 2

Let (S̄N(t), ĪN(t), R̄N(t)) = N−1(SN(t), IN(t),RN(t)).

It follows from the LLN for Poisson processes that
(S̄N(t), ĪN(t), R̄N(t))→ (S̄(t), Ī (t), R̄(t)), where

dS̄(t)

dt
= −λS̄(t)Ī (t),

dĪ (t)

dt
= λS̄(t)Ī (t)− µĪ (t),

dR̄(t)

dt
= µĪ (t) .
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SIR model with memory as LLN limit of non–Markov
stochastic models

Let us go back to the general model of Kermack–McKendrick, first
with a fixed infectivity λ, during an infectious period of length I,
where P(I ≤ t) = F (t). The infection age recovery rate is the hazard
function of I, i.e. µ(t) := f (t)/F c (t), if f if the density of F , and
F c (t) := 1− F (t), i.e. P(I > t) = exp(−

∫ t
0 µ(s)ds).

Then the stochastic model is non Markov, unless if F is an
exponential distribution (i.e. µ is constant).

(S̄N(t), ĪN(t), R̄N(t))→ (S̄(t), Ī (t), R̄(t)) as N →∞, where

S̄(t) = S̄(0)− λ
∫ t

0
S̄(s)Ī (s)ds,

Ī (t) = Ī (0)F c
0 (t) + λ

∫ t

0
F c (t − s)S̄(s)Ī (s)ds,

R̄(t) = Ī (0)F0(t) + λ

∫ t

0
F (t − s)S̄(s)Ī (s)ds .
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Model with constant vs. infection age dependent recovery
rate for the Covid
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He, Lau, Wu et al., Nature Medicine 2020

BRIEF COMMUNICATIONNATURE MEDICINE

Extended Data Fig. 1 | Inferred infectiousness profile. Infectiousness was assumed to start from 1 days (top left) to 7 days (bottom right) before  
symptom onset.

NATURE MEDICINE | www.nature.com/naturemedicine
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Varying infectivity

Let {λ(t), t ≥ 0} be a random function with ≥ 0 values. If

E = inf{t > 0, λ(t) > 0} I = sup{t > 0, λ(E + t) > 0} .

Then E is the exposed period, I the infectious period.
We assume that to each individual is attached a copy λi (t), where
the λi are i.i.d. To the initially infected individuals are attached copies
λ0

j (t) of another type of infectivity function.
We request that λ belongs a.s. to the Skorohod space D, and that
supt≥0 λ(t) ≤ λ∗, where λ∗ is a given constant. Then one can
establish a law of large numbers as N →∞ of the corresponding
individual based model. Define the total force of infection

FN(t) =

I N (0)∑
j=1

λ0
j (t) +

AN (t)∑
i=1

λi (t − τN
i ) = λ×# of infectious indiv.

AN(t) =
∑
i≥1

1(0,t](τ
N
i ) counts the number of indiv. infected on (0, t] .
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Varying infectivity : the LLN

Let SN(t), IN(t),RN(t) denote resp. the number of susceptible,
infected and recovered indiv. in the population.
SN(t) + IN(t) + RN(t) = N. Let S̄N = N−1SN , same with I and R.

(S̄N(t), F̄N(t), ĪN(t), R̄N(t))→ (S̄(t), F̄(t), Ī (t), R̄(t)) as N →∞ :

S̄(t) = S̄(0)−
∫ t

0
S̄(s)F̄(s)ds,

F̄(t) = Ī (0)λ̄0(t) +

∫ t

0
λ̄(t − s)S̄(s)F̄(s)ds,

Ī (t) = Ī (0)F c
0 (t) +

∫ t

0
F c(t − s)S̄(s)F̄(s)ds,

R̄(t) = Ī (0)F0(t) +

∫ t

0
F (t − s)S̄(s)F̄(s)ds ,

with λ̄(t) = E[λ(t)], λ̄0(t) = E[λ0(t)], F = d.f. of E +I, F c = 1−F .

Equivalent to the equations in the 1927 paper of Kermack -
McKendrick. We also have a CLT (with more assumptions on λ).
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Alternative description : a PDE model

Let us introduce the age of infection explicitly in our model :

µN
t (da) =

I N (0)∑
j=1

1η0
j >tδτN

j,0+t(da) +

AN (t)∑
i=1

1τN
i +ηi>tδt−τN

i
(da) .

Let µ̄N
t := N−1µN

t . µ̄N ⇒ µ̄ in D(R+;MF (R+)), where

µ̄t(da) = 1a≥t
F c (a)

F c(a− t)
µ̄0(da− t) + 1a<tF

c(a)Υ(t − a)da

is the unique mesure valued solution of the PDE

〈∂t µ̄t , ϕ〉+ 〈∂aµ̄t , ϕ〉 = ϕ(0)Υ(t)− 〈µ̄t , hϕ〉 ,

where F and h are the d.f. and the hazard rate of the duration of the
infectious period, F c = 1− F .
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F c(a− t)
µ̄0(da− t) + 1a<tF

c(a)Υ(t − a)da

is the unique mesure valued solution of the PDE

〈∂t µ̄t , ϕ〉+ 〈∂aµ̄t , ϕ〉 = ϕ(0)Υ(t)− 〈µ̄t , hϕ〉 ,

where F and h are the d.f. and the hazard rate of the duration of the
infectious period, F c = 1− F .
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Associated FCLT

Let now µ̂N
t =
√
N(µ̄N

t − µ̄t). We first note that µ̂N
0 (0, ·)⇒ µ̂0,

where µ̂0(0, a) = µ̄0(1)1/2B0(¯̄µ0([0, a])), B0 is a Brownian bridge.

µ̂N
· ⇒ µ̂· in D(R+;H−1

loc (R), where µ̂t is the (unique) solution of the
SPDE

∂t µ̂t +∂aµ̂t = −h(a)µ̂t +δ0

[
Υ̂(t) +

√
Υ(t)

dWinf (t)

dt

]
+
∂2Wrec(t, a)

∂t∂a
.
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Time of extinction of an epidemic

This is joint work with I. Drame and A. Mougabe-Peurkor.

Suppose we are in a situation where, starting from t = t0, an
epidemic is declining (i.e. the mean number of susceptible individuals
which an infected infects Reff < 1), while the total number of
infected individuals is M << N = the size of the population. Then
deterministic models are no longer valid, the epidemic is well
approximated by a sub-critical branching process, which decays
essentially like an exponential e−ρ(t−t0).

The approximating branching process associated to our varying
infectivity model is a non–Markov continuous time branching process.
We could derive an equation for the distribution function of the time
of extinction, given that a unique infected individual got infected at
time t0.

If we compare the time of extinction in our model with that of a
Markov SIR model with the same Reff and the same ρ, we see that
the Markov model underestimates the time of extinction.

Etienne Pardoux (I2M, AMU) 30 ans du LMM May 22, 2024 14 / 24



Time of extinction of an epidemic

This is joint work with I. Drame and A. Mougabe-Peurkor.

Suppose we are in a situation where, starting from t = t0, an
epidemic is declining (i.e. the mean number of susceptible individuals
which an infected infects Reff < 1), while the total number of
infected individuals is M << N = the size of the population. Then
deterministic models are no longer valid, the epidemic is well
approximated by a sub-critical branching process, which decays
essentially like an exponential e−ρ(t−t0).

The approximating branching process associated to our varying
infectivity model is a non–Markov continuous time branching process.
We could derive an equation for the distribution function of the time
of extinction, given that a unique infected individual got infected at
time t0.

If we compare the time of extinction in our model with that of a
Markov SIR model with the same Reff and the same ρ, we see that
the Markov model underestimates the time of extinction.

Etienne Pardoux (I2M, AMU) 30 ans du LMM May 22, 2024 14 / 24



Time of extinction of an epidemic

This is joint work with I. Drame and A. Mougabe-Peurkor.

Suppose we are in a situation where, starting from t = t0, an
epidemic is declining (i.e. the mean number of susceptible individuals
which an infected infects Reff < 1), while the total number of
infected individuals is M << N = the size of the population. Then
deterministic models are no longer valid, the epidemic is well
approximated by a sub-critical branching process, which decays
essentially like an exponential e−ρ(t−t0).

The approximating branching process associated to our varying
infectivity model is a non–Markov continuous time branching process.
We could derive an equation for the distribution function of the time
of extinction, given that a unique infected individual got infected at
time t0.

If we compare the time of extinction in our model with that of a
Markov SIR model with the same Reff and the same ρ, we see that
the Markov model underestimates the time of extinction.

Etienne Pardoux (I2M, AMU) 30 ans du LMM May 22, 2024 14 / 24



Varying infectivity + immunity/susceptibility

Kermack and McKendrick already in 1932 discussed progressive loss
of immunity.

Let sk (t) be the susceptibility of the k–th indiv. at time t. The total
susceptibility is SN(t) =

∑N
k=1 sk (t). If someone gets infected at

time t, the probability that k is chosen equals
(
SN(t)

)−1
sk (t).

We assume that the i–th infected individual after time 0 has at time t
the susceptibility

γi (t − τN
i ),

while the j–th individual infected at time 0 has at time t the
susceptibility

γ0
j (t),

where γi (t), i ∈ N, are i.i.d. [0, 1]–valued random functions, which are
non–decreasing and satisfy

γi (t) = 0 for t ≤ end of immunity period .
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The functions λ and γ

Exposed Infectious Immune

Susceptible

Figure – Illustration of the infectivity and susceptibility of an individual from the
time of becoming infected, to the time of recovery, and then to time of losing
immunity and becoming fully susceptible. The blue curve represents the function
λ(t) which increases to a certain value and then decreases to zero, and the
orange curve represents the function γ(t) which gradually increases to 1.
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Varying infectivity + immunity/susceptibility 2

SN(t) =
N∑

k=1

γ0
k (t)1

t<ηN,0
k

+

AN (t)∑
i=1

γi (t − τN
i )1t<ηN

i
,

FN(t) =

I N (0)∑
j=1

λ0
j (t) +

AN (t)∑
i=1

λi (t − τN
i ),

AN(t) =

∫ t

0

∫ ∞
0

1u≤ΥN (s−)Q(ds, du),ΥN(t) = N−1SN(t)FN(t),

where ηN,0
k is the time of (re)infection of the k–th individual, who is either

initially susceptible (then γ0
k (t) ≡ 1), or initially infected (then γ0

k (0) = 0),
and ηN

i is the time of reinfection of the i–th newly infected individual. Q is
a standard PRM on R2

+, τN
i ’s = jump times of AN(t) i.e. the times of the

“new” infections, those which happen after time 0.
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Varying infectivity + immunity/susceptibility 3

Define (S
N

(t), F̄N(t)) = (N−1SN(t),N−1FN(t)).

Our main result is

Theorem

As N →∞, (S
N

(t), F̄N(t)) converges in probability, locally uniformly in t,
to the unique solution of

S(t) = E
[
γ0(t) exp

(
−
∫ t

0
γ0(r)F(r)dr

)]
+

∫ t

0
E
[
γ(t − s) exp

(
−
∫ t

s
γ(r − s)F(r)dr

)]
S(s)F(s)ds,

F(t) = I (0)λ
0
(t) +

∫ t

0
λ(t − s)S(s)F(s)ds .
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Varying infectivity + immunity/susceptibility 4

We combine the exposed and infectious individuals into unique
compartment of “infected individuals”. Similarly, we put the
Susceptible and Recovered individuals into a unique compartment of
susceptible individuals, where the recovered have susceptibility 0.
The limits as N →∞ of the proportions of susceptible and infected
individuals are given by the following formulas, where F (resp. F0)
denote the d.f. of the duration of the infected period of newly
infected individuals (resp. of initially infected individuals).

S(t) = S(0) + I (0)F0(t)−
∫ t

0
[1− F (t − s)]S(s)F(s)ds,

I (t) = I (0)F c
0 (t) +

∫ t

0
F c (t − s)S(s)F(s)ds .

Only the mean of λ(t) (and of λ0(t)) appears in the above system of
equations, while a complicated moment / exponential moment of the
random functions γ(t) (and γ0(t)) appears in the system.
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Comparison with the models of Kermack and McKendrick

In case of the SIR model with infection–age infectivity and recovery
rate, the LLN deterministic model we obtain is exactly the model
which appears in the 1927 paper of Kermack and McKendrick. We
start with i.i.d. λi (t)’s, and we obtain the Kermack and McKendrick
model with E[λ(t)].

In case of the SIRS model with infection age infectivity and recovery
rate, and varying susceptibility, our model in general is quite different,
since it involves not only the expectation of the random functions
γ(t). However, in case γi (t) = ρ(t − ξi ), where ξi is the time of
recovery and ρ is a deterministic function (which is 0 on R−), then
our LLN deterministic model coincides with the model of the 1932
paper of Kermack and McKendrick.
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The effect of waning immunity upon endemicity

Britton and Khalifi have compared progressive loss of immunity to the
unrealistic behavior which is assumed in almost all models, where
individuals jump instantaneously from full immunity to full
susceptibility.

They show that, with the same mean susceptibility, progressive loss of
immunity induces a more severe endemic situation, and requires a
higher vaccination coverage to avoid an endemic situation.

Again, the use of simplified models may lead the authorities to decide
measures which are not enough severe to be really efficient !
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HAPPY BIRTHDAY AND

LONG LIFE TO THE LMM!
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