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Introduction

» Health and disability insurance provides economic protection
from illness or disability

» Typically, an insured individual receives a monthly payment
from an insurance company in the case of illness

P> The expected cost should be covered by premium payments

» The insurance company needs to predict future costs using
statistical models based on historical data

» Typically done by estimating transition probabilities between
states such as 'healthy’, 'ill', 'dead’, ...
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Disability model

» Consider a population of insured individuals

» Let E; be the number of healthy individuals from the
population subgroup i

» We denote by D; the number of individuals falling ill amongst
the E; insured healthy individuals:

D; ~ Bin(Ej, p(x;))

» For each i there is some associated data x; € R? which may
e.g. contain information about age, gender, ...

» p(x;) is the probability that an individual randomly selected
from E; falls ill
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Disability model

> The goal is to model and estimate the logistic disability
inception probability logit p(x):

logit p(x) := log 15(;())0 (1)

» Functional form guarantees p(x) € (0,1).
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> The goal is to model and estimate the logistic disability
inception probability logit p(x):

logit p(x) := log 15(;())0 (1)

» Functional form guarantees p(x) € (0,1).
» One possible method is Support Vector Regression (SVR)
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logit p(x) := log 1I—):()x) = ZaiK(X,Xi) + 5,
i=1
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Disability model

> The goal is to model and estimate the logistic disability
inception probability logit p(x):

logit p(x) := log 15(;())0 (1)

» Functional form guarantees p(x) € (0,1).
» One possible method is Support Vector Regression (SVR)

(

logit p(x) := log ll—):()x) = ZaiK(X,Xi) + 5,
i=1

» where K is a 'quantum’ kernel (to be defined) that is to be
estimated on a quantum computer, and the parameters {a;};
and 3 are to be subsequently fitted using SVR.
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Review: Kernels and support vector regression

> Let x; € R, y; € R,i=1,...,n, be observations in a data set

> A feature map ® : RY — F maps a sample data point x to a
feature vector ®(x) in a feature space F (Hilbert space with
inner product (-, -))

> & naturally gives rise to a kernel through the relation

K(x,2) = (®(x), #(2)), (2)

» K(x,z) is a similarity measure between x and z in the feature
space.

» The reproducing kernel Hilbert space associated with & is
defined by

R={f:R¥—C; f(x)=(w,®(x)) VxecR weF}.
(3)
» f(x):= (w,®(x)) can be interpreted as linear models in the
feature space F.
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Review: Kernels and support vector regression

SVR can be formulated as a convex optimization problem of the
form

1 n
P: min Swl?+CY (6 +€)

w.bEE —
st (w'd(x)+b)—y; <e—¢, i=1,....n,
vi— (wWTo(x)+b)<e—¢€, i=1,...n,
51’7 5:20’ i:].,...,n7

where ¢ determines the error tolerance of the solution, C is a
regularization parameter, and {; e Rand (& e R,i=1,...,n, are
slack variables.
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Review: Kernels and support vector regression

The dual formulation D of P is (recall K(x;,x;) = (®(x;), ®(x;)))

n

. 1 / ’
D: x5 Zl()\i — M)A = A)K(xi, X))
ij=
—eY (=) + Dy =)
i=1 i—1
st Y (A= X)) =0,
i=1

0§)\,§ C,i:].,...,n,
0< M. <C,i=1,...,n,
The solutions of P and D coincide and are given by
n
F(x) = aiK(x,x)+ B, (4)
i=1
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Review: Kernels and support vector regression

» The feature map (and thus the kernel) can be chosen in many
different ways

» lIdeally, the feature map should be chosen such that the kernel
can be efficiently computed

> Well known classical kernels include e.g. the Gaussian kernel:
K(x,z) = e llx=2IP

» A modern alternative is provided by the class of quantum
kernels

» Data is mapped to quantum states in some quantum feature
(Hilbert) space H

» Quantum kernels can be estimated using quantum computers!
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Review: Quantum computers

> A quantum computer is a computer that is governed by the
laws of quantum physics

» In classical computers, information is represented by bits
taking values in {0,1} (On,Off)

» Quantum computers uses qubits

> Information represented by quantum state (Superposition tune
from dimmed to brightened)

) = al0) + b[1), [a* +[b* = 1.
» A quantum state induces a probability distribution on {0,1}

» At measurement of the quantum state of the qubit, an
outcome is determined
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Review: Quantum computers

10) z The state of a qubit can be represented using
spherical coordinates on the Bloch sphere:

) = cos §|0) + e sin § |1)

———

1)
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Review: Quantum computers

» Programming a quantum computer with d qubits is performed
by creating a quantum circuit A

» A induces a probability measure for the r.v. V4 on {0,1}¢
» Running the circuit essentially means sampling from V4

> Intuitively appealing to probabilists, statisticians, actuaries,
quants, ...

» Today, anyone can run quantum circuits on real quantum
computers using cloud services such as IBM Quantum
Experience!
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Review: Quantum kernel estimation

» Let & : x — P(x) be a quantum feature map that maps a
data point to a quantum state in a Hilbert space H

» Any quantum state ) € H satisfies the Schrodinger equation

iﬁaatw(t,x) = Hy(t,x), (0,-) € H is given,  (5)

where H is the Hamiltonian operator associated to the
quantum system.

» If H is time-independent, the solution to (5) is given by

lﬁ(t,X) = U(t)i/)(O,X), (6)
where the operator U defined by
U(t) — efth/h (7)

is the unitary time evolution operator associated with H.
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Review: Quantum kernel estimation

» For every pair (®, x) there is an operator Us(x) (feature
embedding circuit), implicitly determined by

®(x) = Us(x)S0, (8)

where Qg denotes the ground state (the state with lowest

energy).
P Let the kernel K corresponding to ® be given by

K(x,2) = [(9(x), ®(2))* = 19 Up(2)Us () D> (9)
that is, K(x, z) is given by the probability of obtaining the
measurement outcome {2y when measuring the quantum state

V(x, z) defined by

V(x, z) = U} (2)Us(x)Q, (10)
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Review: Quantum kernel estimation

» The kernel can now be estimated on a quantum computer!

> We load the state W(x, z) into a quantum circuit.
» This circuit is run n times

> K(x,z) is estimated by the frequency of Qy-measurements.

» The form of the kernel (15) is what allows us to estimate it
using a quantum computer! i.e.

K(x,z) = [(®(x), ®(2))* = 1) U} (2) Us(x) Qol?
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Disability model

> We propose to model the logistic disability inception
probability logit p(x) as

logit p(x) := log 15(:())0 = ZaiK(XaXi) + 5,
i=1

where K is a quantum kernel (to be defined) that is to be
estimated on a quantum computer, and the parameters {«;};
and (3 are to be subsequently fitted using SVR.
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Disability model

» Our data: gender (x;1) and age (x;2)

> We choose the kernel K associated with the unitary operator
Us(+) defined by

Us(xi) = (/®RY(7TXI,2)) CRZ(WXi,2)(RY(WXi,2)®RY(7TXi,1)>,
(11)

» Ry(-) denotes a rotation around the Y-axis of the Bloch
sphere

» Cgr,(-) denotes a rotation around the Z-axis for the second
qubit, conditional on the state of the first qubit.
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Disability model

The unitary operator (11) can be represented by the quantum
circuit

go: — Ry (7TX,',1) T Ry (7TX,'72) —

g1 : — Ry (7TX,'72) — Ry, (7TX,'72)

> x;1 takes the value 1 if the population subgroup is male, and
0 otherwise

> Xx;o is the age of the population subgroup, in centuries.

This circuit is designed to
> clearly separate male and female subgroups.

» gradually increase the dissimilarity between different age
groups as the difference in ages increases.
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Disability model

For each pair (x;, X;), we run this quantum circuit inserting the
values of x;, and then run the adjoint circuit inserting the values of

|0> — RY (7TX,"1) T RY (7TX,'72) E—
|0> — RY (7TX,"2) — Rz (7TX,'72)

/
72

— Ry (=7x2) ? Ry (—m1) HAF——

Ry (—7x5.0) H Ry (—7m%2) gr%
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Numerical results: kernel

> We perform simulations on the IBM Yorktown quantum
computer

» For each pair (x;, x;) we
P run the circuit 8192 times and measure the outcomes

> estimate K(x;, x;) with the observed frequency of the ground
state.

» Binomial sampling error small (< 1%), hardware error
dominates

» Results are compared with exact (classically determined)
kernel
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Numerical results: kernel
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Numerical results: kernel
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Figure: Kernel matrix estimated on the IBM Yorktown quantum
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Numerical results: disability inception
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Figure: Out-of-sample disability inception rates estimated by state vector
simulation and from the IBM Yorktown quantum computer.
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Numerical results: disability inception

Leave-one-out crossvalidation:

Table: Weighted out-of-sample R? for the classical and quantum kernels.

kernel R?

polynomial 0.550
state vector quantum kernel | 0.541
Gaussian kernel 0.529
Yorktown quantum kernel 0.518
sigmoid 0.494
linear 0.426
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Conclusions

» We propose a hybrid classical-quantum approach to estimate
disability inception probabilities

» Suggested model performs similar to existing classical model,
even on noisy hardware

P> The approach is not restricted to insurance applications, and
can be used for general regression and classification problems,
e.g. Credit Risk, Fraud detection, ...

» Qutlook: As the hardware improves and becomes more

powerful, this approach might be able to surpass classical
models
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Happy Birthday LMM!
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