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GAN: generative adversarial networks

Goal: generate artificial images that look like true images.

The StyleGAN algorithm synthesizes photorealistic faces such as

the examples above. Figure is from Karras et al. (2018).

2 / 22



GAN: generative adversarial networks

During the training process, the GAN needs a set of real faces to

learn from.

Real faces such as these examples were used to train the

algorithm. Figure is from the FFHQ dataset.
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Since the seminal paper
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;

Warde-Farley, D.; Ozair, Sh.; Courville, A.; Bengio, Y.

(2014). Generative Adversarial Networks (PDF). NIPS 2014
many versions have been proposed
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Questions for mathematicians

Mathematical formalisation of the problem.

Theoretical guarantees for widely used algorithms.

Theoretical limits.

Comparison and optimality of the algorithms.

5 / 22



Relevant prior work

“Some theoretical properties of GANs”, Biau, Cadre, Sangnier,

Tanielian, Ann. Statist. 48 (3), 2020.

“Some Theoretical Insights into Wasserstein GANs”, Biau, Sangnier,

Tanielian, JMLR 22, 2021.

“How Well Generative Adversarial Networks Learn Distributions”,

Tengyuan Liang, JMLR, 2021.

“Statistical guarantees for generative models without domination”, N.

Schreuder, V.-E. Brunel, A. D., ALT, 2021.

“Rates of convergence for density estimation with GAN”, D.

Belomestny, E. Moulines, A. Naumov, N. Puchkin, S. Samsonov,

arXiv:2102.00199, 2021.

“Generative Modeling with Denoising Auto-Encoders and Langevin

Sampling”, A. Block, Y. Mroueh, A. Rakhlin arXiv:2002.00107, 2020.

“Statistical Efficiency of Score Matching: The View from

Isoperimetry”, F. Koehler, A. Heckett, A. Risteski, ICLR 2023.

“The Speed of Mean Glivenko-Cantelli Convergence”, R. M. Dudley,

Ann. Math. Statist. 40(1): 40-50 (February, 1969).

6 / 22



Problem formulation

Generative models are used for accomplishing the following task.

Nature draws n independent vectors Y 1, . . . ,Y n

from a distribution P ∗ defined on RD.

We are given a noisy and contaminated version

X1, . . . ,Xn of this sample.

The goal is to design an algorithm that generates

random vectors from a distribution Plearner which is

as close as possible to P ∗.
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Poor generator 1

Training sample

Generated examples

New example generation should be fast
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Poor generator 2

Training sample

Generated examples

Distribution of the generated examples should be close to the

data generating distribution.
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Poor generator 3

Training sample

Generated examples

Generator should avoid replication.
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Desirable properties

This can be viewed as a distribution estimation problem with

two requirements:

[R1] It should be easy to sample from Plearner.

[R2] Plearner should be “close” to P ∗ (the error has to

admit an interpretation as a sampling error).

This formulation is incomplete since it allows to take the

uniform distribution P̂n over the observations as Plearner

(P̂n = 1
n

∑n
i=1 δXi).

From a generative model perspective, P̂n is pointless: it does

not yield examples that are different from the observed ones.

[R3] Examples drawn from Plearner should be different

from those revealed to the learner.
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Notation

Ud is the uniform distribution on the hyper-cube [0, 1]d.

For convex X ⊂ Rd, LipL(X ) is the set of all Lipschitz

functions with a Lipschitz constant ≤ L.

For a function g : X → R, ∥g∥∞ = maxx∈X |g(x)|.

For a distribution P defined on (E,E) and a measurable

g : (E,E) 7→ (F,F), we denote by g♯P the “push-forward”

measure defined by

(g♯P )(A) = P
(
g−1(A)

)
, ∀A ∈ F.
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Manifold Assumption

In most applications, the ambient dimension D is very large.
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Figure: Illustration of the manifold assumption (Ass. A). Most Xi’s

are close to the manifold defined as the image of [0, 1]d by the map g.
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Manifold Assumption
Ambient dimension versus latent dimension

In most applications, the ambient dimension D is very large.

Figure: Vector representation of a black and white image: the ambient

dimension is D = 48. Latent dimension is d = 12.
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Manifold Assumption
Formal and extended version

Let σ ≥ 0 be some constant.

Assumption A: There exists g∗ : [0, 1]d → [0, 1]D (with

d ≪ D), random vectors U1, . . . ,Un ∈ Rd and

ξ1, . . . , ξn ∈ RD such that

We have Xi = g∗(U i) + ξi for every i ∈ {1, . . . , n}.

U i are iid uniformly distributed in [0, 1]d (U i
iid∼ Ud),

max
i=1,...,n

E[∥ξi∥2] ≤ σ for some σ < ∞.

The parameter σ, referred to as the noise magnitude, is

unknown but assumed to be small.

Alternatively, one can see this assumption merely as the

definition of σ:

σ = W1(PX , g∗♯Ud)
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Risk of a generator and ERM

Let G be a set of smooth (at least Lipschitz) functions.

For every candidate generator g—a measurable mapping

from [0, 1]d to RD—we define the risk

RP ∗(g) = W1

(
g♯Ud, P

∗). (1)

Our goal is to find a mapping

Ĝ : (RD)n → G (X1, . . . ,Xn) 7→ ĝn, (2)

such that RP ∗(ĝn) is as small as possible.

We define the ERM, by

ĝERMn,G ∈ argmin
g∈G

W1

(
g♯Ud, P̂n

)
. (ERM)
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Risk bound from Schreuder et al. (2021)

Theorem (Plearner is close to P ∗)

Let Assumption A hold with d > 2 and let the coordinates g∗j of

g∗ belong to LipL([0, 1]
d) for some L ≥ 1. Then, the ERM

satisfies

E[RP ∗(ĝERMn,G )] ≤ inf
g∈G

RP ∗(g) + 2σ︸ ︷︷ ︸
approx. error

+
c
√
dL

n1/d︸ ︷︷ ︸
generalisation error

. (3)

where c is a universal constant.
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Left-inverse constrained ERM
An illustration
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Figure: Generating points on a 2D spiral using a 1D latent space. The

mapping g : [0, 1] → R2 is represented by the green arrows. Each

arrow indicates how points from the latent space are mapped to

corresponding positions in the 2D spiral.
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Left-inverse constrained ERM
Definition

We define the LIC-ERM, as a solution ĝLICERMn,G to

minimise W1

(
g♯Ud, P̂n

)
(LICERM)

subject to

g ∈ G and

∃h ∈ LipLh
(RD) s.t. h ◦ g = Idd.

19 / 22



Main result

Theorem (Plearner is close to P ∗ and bounded away from P̂n)

Let Assumption A hold with d > 2 and let the coordinates g∗j of

g∗ belong to LipL([0, 1]
d) for some L ≥ 1. Then, the LICERM

satisfies

E[RP ∗(ĝn,G)] ⩽ inf
g∈GLh

RP ∗(g) + 2σ +
c
√
dL

n1/d
,

W1(ĝn,G♯Ud, P̂n) ⩾
1

2Lh(1 + c′dn
1/d)

.

The second inequality means that LIC-ERM is bounded away

from the empirical distribution of the training sample. Thus, it

avoids replication!
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Relation to prior work

[Biau et al., AoS 2020] establish large sample properties of

the estimated distribution assuming that all the densities

are dominated by a fixed known measure on a Borel subset

of RD.

When the admissible discriminators are neural networks

with a given architecture, [Biau et al., arXiv 2020] obtains

the parametric rate n−1/2.

[Luise et al., arXiv 2020] measure the quality of sampling

through the Sinkhorn divergence (while we consider IPMs)

and consider smoothness larger than d/2. The latter leads

to parametric rates of convergence n−1/2.
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Conclusion

We considered a general and nonparametric framework for

learning generative models.

Given high-dimensional data, we learn their distribution in order

to sample new data points that resemble the training ones, while

not being identical to those.

A key point in our work is to leverage the fact that the

distribution of the training samples, up to some approximation

error and adversarial contamination, is supported by a

low-dimensional smooth manifold.

This allows us to alleviate the curse of dimensionality.

We derived nonasymptotic bounds for the risk of our empirical

risk minimizer, with rates of convergence that depend on the

ambient dimension only through multiplicative constants.
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